Automating the World

Changes for the Better

FACTORY AUTOMATION

MELSEC iQ-F Series iQ Platform-compatible PLC

FX50c FX $_{50}$
 FX5U

The next level of industry MELSEC iQ-F

Our Factory Automation business is focused on "Automating the World" to make it a better, more sustainable environment supporting manufacturing and society, celebrating diversity and contributing towards an active and fulfilling role.

SUSTAINABLE DEVELOPMENT G*ALS

The Mitsubishi Electric Group is actively solving social issues, such as decarbonization and labor shortages, by providing production sites with energy-saving equipment and solutions that utilize automation systems, thereby helping towards a

Mitsubishi Electric is involved in many areas including the following:

Energy and Electric Systems

A wide range of power and electrical products from generators to large-scale displays.

Electronic Devices

A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance

Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems

Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems

Maximizing productivity and efficiency with cutting-edge automation technology.

Concept

$\mathrm{iO}_{\text {Putrom }}$

"Connect" Factory Automation with iQ Platform

"iQ Platform", a solution that integrates and cooperates with controllers, HMI, engineering environments, and networks at the production site, Mitsubishi Electric has proposed along with "e-F@ctory" that information-links the high-level information system (manufacturing execution system (MES)) and production site, will integrate and optimize your system with advanced technology to reduce development, production and maintenance costs.

Fundamentally Solving FA's Task from the Viewpoint of TCO

Controller \& HMI
Improving productivity and product quality

1. Significant improvement in total system performance due to high-speed MELSEC series system bus performance
2. Equipped with dedicated memory for $\mathrm{FB}^{* 1 /}$ label required for program standardization
3. Integrated, enhanced security function

Network

Loss reduction with high precision and production speed

1. Can capture 1-Gbps high-speed communication on various networks, including CC-Link IE TSN, with no loss
2. Realizing seamless communication of various devices using SLMP*2

Engineering environment

Efficient development, operation, and maintenance

1. Possible to detect and generate a largescale network configuration diagram from the actual machine
2. Realized mutual reflection of parameters between MELSOFT Navigator and each engineering software
3. Automatically following device change of system labels held commonly between each controller and HMI

MELSEC iQ-F series

Designed on the concepts of outstanding performance, superior drive control and user centric programming, Mitsubishi Electric MELSEC-F series has been reborn as the MELSEC iQ-F series.

From stand-alone use to networked system applications,
MELSEC iQ-F series brings your business to the next level of industry.

Design concept of micro PLC
Outstanding performance

- High-speed system bus
- Extensive built-in functions
- Enhanced security functions
- Battery-less

| Improvement of programming |
| :--- | :--- | :--- |
| environment |

| - Easy programming |
| :--- | :--- | :--- |
| by drag and drop |

- Reduced development time with
module FB

Function and cost performance required for small-scale/stand-alone control

 functions.Supports the customer to "go one step ahead in manufacturing".

Not only built-in positioning but full positioning is also possible by using extension modules.

Analog Control

Analog control suitable for the application is possible by using extension modules in addition to the analog input/output function of the FX5U CPU module.

The high-performance, high-speed counter built-in the CPU module enables high-speed control with a simple program.
go to P64

Environment

Realized graphical intuitive operability, and easy
programming by just "selecting".

Safety Control

For details,

Safety extension modules that have obtained certification (Category 4, PL e, and SIL3) which complies with international safety standards bring safety to machinery and equipment.
Network/Communication/
For details, go to P46.

Lineup of modules compatible with various open networks, including CC-Link IE TSN and OPC UA.

System Configuration

 FX5sSimple model for building small IoT

FX5 expansion adapter

FX5 expansion board

Peripheral device

GOT2000

Outline specifications

Item		Outline specifications
Power supply	Rated voltage	100 to 240 V AC, $50 / 60 \mathrm{~Hz}$
	Power consumption*1	28 W (30M), 30 W (40M), 33 W (60M)
	Rush current	Max. 30 A for 5 ms or less/ 100 V AC Max. 50 A for 5 ms or less/200 V AC
	24 V DC service power supply capacity*2	400 mA
Input/ output	Input specifications	$5.1 \mathrm{~mA} / 24 \mathrm{~V}$ DC (X 10 and later: $4.0 \mathrm{~mA} / 24 \mathrm{~V}$ DC)
	Output specifications	Relay output type: $2 \mathrm{~A} / 1$ point, 6 A or less $/ 3$ points common, 8 A or less $/ 4$ points common, 30 VDC or less, 240 VAC or less (250 V AC or less in case of noncompliance with CE, UL, cUL Standards) Transistor output type: $0.5 \mathrm{~A} / 1$ point, 0.6 A or less $/ 3$ points common, 0.8 A or less $/ 4$ points common 5 to 30 VDC
	Input/output extension	No connection

[^0]*2: Use as power supply for input devices. (Cannot be used as an external power supply for expansion adapters.)

Please choose the I/O type of CPU module suited for your equipment.

FX5S CPU module

[^1]Option For details, refer to P14 [System Configuration (Option)].

System Configuration

 FX5UHigh function entry model with excellent cost performance that can be used in any scene

FX5 expansion adapter

FX5UJ CPU module

Outline specifications

Item		Outline specifications
Power supply	Rated voltage	100 to 240 V AC, $50 / 60 \mathrm{~Hz}$
	Power consumption*1	$30 \mathrm{~W}(24 \mathrm{M}), 32 \mathrm{~W}$ (40M), 35 W (60M)
	24 V DC service power supply capacity*2	$400 \mathrm{~mA}(24 \mathrm{M}, 40 \mathrm{M}, 60 \mathrm{M})$ When an external power supply is used for the input circuit of the CPU module: $460 \mathrm{~mA}(24 \mathrm{M}), 500 \mathrm{~mA}(40 \mathrm{M}), 550 \mathrm{~mA}$ (60M)
Input/ output	Input specifications	$5.3 \mathrm{~mA} / 24 \mathrm{~V}$ DC (X 10 and later: $4.0 \mathrm{~mA} / 24 \mathrm{~V} \mathrm{DC}$)
	Output specifications	Relay output type: $2 \mathrm{~A} / 1$ point, 6 A or less $/ 3$ points common, 8 A or less $/ 4$ points common, 30 VDC or less, 240 VAC or less (250 V AC or less in case of noncompliance with CE, UL, cUL Standards) Transistor output type: $0.5 \mathrm{~A} / 1$ point, 0.6 A or less $/ 3$ points common, 0.8 A or less $/ 4$ points common 5 to 30 VDC
	Input/output extension	Extension devices for FX5 can be connected: when adding an extension connector type, the connector conversion module (FX5-CNV-IF) is required.
*1: The mod *2: Wh	values show the state wh ule. (Including the curren I/O modules are conne	e the service power of 24 VDC is consumed to the maximum level in case that its configuration has the max. number of connections provided to CPU the input circuit) d, they consume current from the 24 V DC service power supply.

Max. number of control points 256 points

High-speed counter function (max. 8 ch$)$	Positioning function (max. 3 axes)
USB (Mini-B) connector	SD memory card
slot	

Please choose the I/O type of CPU module or I/O module suited for your equipment. Refer to the page below for the details of I/O type of each product.

FX5 extension module (Extension cable type)

FX5 extension module
(Extension cable type)

FX5 extension module (Extension connector type)

Option For details, refer to P14 [System Configuration (Option)].

[^2]*3: The availability of the connection depends on the version of the CPU module. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool

System Configuration

High functioning all-in-one model equipped with advanced built-in functions and diverse expandability

FX5 expansion adapter
FX5U CPU module
-保

Item		Outline specifications	
		AC power supply type	DC power supply type
Power supply	Rated voltage	100 to 240 V AC, $50 / 60 \mathrm{~Hz}$	24 V DC
	Power consumption*1	30 W (32M), 40 W (64M), 45 W (80M)	30 W (32M), 40 W (64M), 45 W (80M)
	24 V DC service power supply capacity	400 mA [$300 \mathrm{~mA}^{* 3}$] (32M), 600 mA [300 mA*3] (64M, 80M) When an external power supply is used for the input circuit of the CPU module: $480 \mathrm{~mA}\left[380 \mathrm{~mA}^{* 3}\right.$] (32M), $740 \mathrm{~mA}\left[440 \mathrm{~mA}^{* 3}\right](64 \mathrm{M}), 770 \mathrm{~mA}\left[470 \mathrm{~mA}^{* 3}\right]$ (80 M)	-
	24 V DC internal power supply capacity	-	$\begin{aligned} & 480 \mathrm{~mA}\left(360 \mathrm{~mA}^{* 2}\right)(32 \mathrm{M}), 740 \mathrm{~mA}\left(530 \mathrm{~mA}^{* 2}\right)(64 \mathrm{M}), \\ & 770 \mathrm{~mA}\left(560 \mathrm{~mA}^{* 2}\right)(80 \mathrm{M}) \end{aligned}$
Input/ output	Input specifications	$5.3 \mathrm{~mA} / 24 \mathrm{~V}$ DC (X20 and later: $4.0 \mathrm{~mA} / 24 \mathrm{~V}$ DC)	
	Output specifications	Relay output type: $2 \mathrm{~A} / 1$ point, 8 A or less $/ 4$ points common, 8 A or less $/ 8$ points common, 30 VDC or less, 240 V AC or less (250 V AC or less in case of noncompliance with CE, UL, cUL Standards) Transistor output type: $0.5 \mathrm{~A} / 1$ point, 0.8 A or less $/ 4$ points common, 1.6 A or less $/ 8$ points common 5 to 30 VDC	
	Input/output extension	Extension devices for FX5 can be connected: when adding an extension connector type, the connector conversion module (FX5-CNV-IF) is required.	

[^3]
Please choose the I/O type of CPU module or I/O module suited for your equipment. Refer to the page below for the details of I/O type of each product.

FX5 extension module (Extension cable type)

*1: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.
*2: Spring clamp terminal block type
*3: For the module requiring parameter in FX3 extension module, parameter settings by program are necessary. When connecting the FX3 extension module, the bus speed for FX3 applies for access. For details, refer to Chapters 4 through 7
*4: Max. number of control points, including remote I/O points.

[^4]
System Configuration

 FX5ucHigh functioning compact model to help miniaturize equipment by condensing various functions into a compact body

FX5 expansion adapter

Peripheral device

FX5UC CPU module

FX5 extension module (Extension connector type)

FX5-C16EX/D
FX5-C16EX/DS FX5-C32EX/D FX5-C32EXIDS FX5-C32EX/DS-TS*2

FX5UC-64MT/D
DC D1 T1 FX5UC-64MT/DSS DC|D2 ${ }^{\text {T2 }}$ Input: 32 points/Output: 32 points

FX5UC-96MT/D
DC D1 T1 DC D2 T2 Input: 48 points/Output: 48 points

FX5-C32ET/D
FX5-C32ET/D
FX5-C32ET/DSS
FX5-C32ET/DSS
FX5-C32ET/DS-TS*2
FX5-C32ET/DSS-TS*2
DC DC power supply
D1 DC input (sink)
D2 DC input (sink/source)
T1 Transistor output (sink)
T2 Transistor output (source)
Relay output
Connector connection Cable connection

Outline specifications

Item		Outline specifications
Power supply	Rated voltage	24 V DC
	Power consumption*1	32M: 5 W/24 V DC (30 W/24 V DC +20\%, -15\%) 64M: 8 W/24 V DC (33 W/24 V DC +20\%, -15\%) 96M: $11 \mathrm{~W} / 24 \mathrm{~V}$ DC (36 W/24 V DC +20\%, -15\%)
	5 V DC power supply capacity	720 mA
	24 V DC internal power supply	500 mA
Input/ output	Input specifications	$5.3 \mathrm{~mA} / 24 \mathrm{~V}$ DC (X 20 and later: $4.0 \mathrm{~mA} / 24 \mathrm{~V} \mathrm{DC}$)
	Output specifications	Relay output type: $2 \mathrm{~A} / 1$ point, 4 A or less $/ 8$ points common*2 30 VDC or less, 240 VAC or less (250 V AC or less in case of noncompliance with CE, UL, cUL Standards) Transistor output type: Y000 to Y003 $0.3 \mathrm{~A} / 1$ point, Y004 and later $0.1 \mathrm{~A} / 1$ point, $0.8 \mathrm{~A} / 8$ points common*3 5 to 30 V DC
	Input/output extension	Extension device for FX5 can be connected (extension power supply module (FX5-C1PS-5V) or connector conversion module (FX5-CNV-IFC) is required when connecting an extension cable type)
*1: The value results when the CPU module is used alone. The values in the parentheses () result when the maximum no. of connections have been made to the CPU module. (External 24 V DC power supplies of extension devices are not included.) *2: 8 A or less when two common terminals are connected to the external part. *3: 1.6 A or less when two common terminals are connected to the external part.		

Option For details, refer to P14 [System Configuration (Option)]

*1: Depending on the CPU module, system configuration serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.
*2: Spring clamp terminal block type
*3: For the module requiring parameter in FX3 extension module parameter settings by program are necessary. When connecting the FX3 extension module, the bus speed for FX3 applies for access. For details, refer to Chapters 4 through 7
*4: Max. number of control points, including remote I/O points.

[^5]
System Configuration (Option)

Numerous options are available, including connection cables and connectors. These options can be selected according to your application. For details on the options that can be connected to each CPU module, refer to the manual.

Two-tier layout is possible when the width inside the control panel is narrow!

On-site PLC and laptop computers
convenient wiring inside the control panel.
(1)

Terminal blocks allow

7

Customers can make their input/output cables. Customers are responsible for providing their wires and tools. can also be easily connected. This is useful for maintenance.

6

Dedicated cable for power supply. Connect to the connector on the bottom of the module.
 (FX2NC-100BPCB is required separately when adding FX5-C $\square E X / D$ or FX5-C32ET/D to FX5UC- $\square M T / D S S$ or FX5UC-32M $\square / D S \square$-TS modules.)

(1) Terminal block

For converting the FX5UC or 20-pin MIL connector of an I/O extension into a terminal block.

ITerminal block conversion

- FX-16E-TB
- FX-16E-TB/UL
- FX-32E-TB
- FX-32E-TB/UL

- Terminal block/output type conversion

Use when the transistor output of the FX5UC is to be a relay, triac, or transistor.

Relay output type

- FX-16EYR-TB
- FX-16EYR-ES-TB/UL

Triac output type

- FX-16EYS-TB
- FX-16EYS-ES-TB/UL

Transistor output type (sink)

- FX-16EYT-TB

Transistor output type (source)

- FX-16EYT-ESS-TB/UL

(3) Extended extension cable

Use when the CPU module and extension module are to be installed at a distance from each other.

- FX5-30EC $(30 \mathrm{~cm})^{* D 1}$
- FX5-65EC $(65 \mathrm{~cm})^{* D 2}$
(4) Connector conversion adapter is required when connected with an input/output module (extension cable type), high-speed pulse input/output module, or an intelligent function module.

(4) Connector conversion adapter

Use to convert connectors between extension cables and extension cable type modules.

For connecting external device
(one side single wire)

- FX-16E-500CAB-S (5 m, 20-pin single wire)

(2) I/O cable

Connect the CPU module or FX5 extension module to the terminal block.

For terminal block connection

- FX-16E- \square CAB (20-pin on both ends)
- FX-16E- \square CAB-R (20-pin on both ends)

$$
\square: 150(1.5 \mathrm{~m}) / 300(3 \mathrm{~m}) / 500(5 \mathrm{~m})
$$

5 Communication cable

Use to connect to a computer.

USB communication FX5S FX5UJ

- MR-J3USBCBL3M (3 m)
- GT09-C30USB-5P (3 m) [From Mitsubishi Electric System \& Service Co., Ltd.]

6 Power supply cable

Use to connect to a power supply.

(7) Connector for input/output

Use to create your own input/output cables for connection to external devices.

I Connector for self-making I/O cable

Other options are available in addition to the provided examples.

SD memory card module

FX5S
Required when using an SD memory card for an FX5S CPU module.

- FX5-SDCD

SD memory card

Use for data logging and backup/restore functions

- NZ1MEM-2GBSD (2 Gbytes)
- NZ1MEM-4GBSD (4 Gbytes)
- NZ1MEM-8GBSD (8 Gbytes)
- NZ1MEM-16GBSD (16 Gbytes)
[Related products are also available.]
In addition to these options, connection cables and positioning signal conversion modules from partner manufacturers are available. For details on related products, refer to Chapter 9 below.

Battery

[Point]

FX5 CPU module is battery-less.
Please use batteries as needed for FX5U/FX5UC

Engineering tool

Software for programming CPU modules.

- GX Works3

Performance Specifications

FX5S CPU module performance specifications

	Item	Specification
Control system		Stored-program repetitive operation
Input/output control system		Refresh system (Direct access input/output allowed by specification of direct access input/output [DX, DY])
Programming specifications	Programming language	Ladder diagram (LD), structured text (ST), function block diagram/ladder diagram (FBD/LD)
	Programming expansion function	Function block (FB), function (FUN), label programming (local/global)
	Constant scan	0.5 to 2000 ms (can be set in 0.1 ms increments)
	Fixed cycle interrupt	1 to 60000 ms (can be set in 1 ms increments)
	Timer performance specifications	$100 \mathrm{~ms}, 10 \mathrm{~ms}, 1 \mathrm{~ms}$
	No. of program executions	32
	No. of FB files	16 (Up to 15 for user)
Operation specifications	Execution type	Standby type, initial execution type, scan execution type, fixed-cycle execution type, event execution type
	Interrupt type	Internal timer interrupt, input interruption, high-speed comparison match interrupt
Command processing time	LD XO	84 ns
	MOV D0 D1	100 ns
Memory capacity	Program capacity	48 k steps (96 kbytes, flash memory)
	SD memory card	Memory card capacity (SD/SDHC memory card: Max. 16 Gbytes)
	Device/label memory	120 kbytes
	Data memory/standard ROM	5 Mbytes
Flash memory (Flash ROM) write count		Maximum 20000 times
File storage capacity	Device/label memory	1
	Data memory P: No. of program files FB: No. of FB files	P: 32, FB: 16
	SD memory card	NZ1MEM-2GBSD: 511*1
		NZ1MEM-4GBSD, NZ1MEM-8GBSD, NZ1MEM-16GBSD: 65534*1
Clock function	Display data	Year, month, day, hour, minute, second, day of week (leap year automatic detection)
	Precision	Differences per month $\pm 45 \mathrm{sec} . / 25^{\circ} \mathrm{C}$ (TYP)
No. of input/output points		60 points or less
Power failure retention (clock data*2)	Retention method	Large-capacity capacitor
	Retention time	15 days (Ambient temperature: $25^{\circ} \mathrm{C}$)
Power failure retention (device)	Power failure retention capacity	Maximum 5 k words

*1: The value listed above indicates the number of files stored in the root folder.
*2: Clock data is retained using the power accumulated in a large-capacity capacitor incorporated into the PLC. When voltage of the large-capacity capacitor drops, clock data is no longer accurately retained. The retention period of a fully charged capacitor (electricity is conducted across the PLC for at least 30 minutes) is 15 days (ambient temperature: $25^{\circ} \mathrm{C}$). How long the capacitor can hold the data depends on the operating ambient temperature. When the operating ambient temperature is high, the holding period is short.

Number of device points

Item			Base	Max. number of points
No. of user device points	Input relay (X)		8	1024 points or less The total number of X and Y assigned to input/output
	Output relay (Y)		8	1024 points or less points is up to 60 points.
	Internal relay (M)		10	32768 points (can be changed with a parameter)**
	Latch relay (L)		10	32768 points (can be changed with a parameter)**
	Link relay (B)		16	32768 points (can be changed with a parameter)**
	Annunciator (F)		10	32768 points (can be changed with a parameter)**
	Link special relay (SB)		16	32768 points (can be changed with a parameter)**
	Step relay (S)		10	4096 points (fixed)
	Timer system	Timer (T)	10	1024 points (can be changed with a parameter)*1
	Accumulation timer system	Accumulation timer (ST)	10	1024 points (can be changed with a parameter)*1
	Counter system	Counter (C)	10	1024 points (can be changed with a parameter)*1
		Long counter (LC)	10	1024 points (can be changed with a parameter)*1
	Data register (D)		10	8000 points (can be changed with a parameter)*1
	Link register (W)		16	32768 points (can be changed with a parameter)**
	Link special register (SW)		16	32768 points (can be changed with a parameter)**
No. of system device points	Special relay (SM)		10	10000 points (fixed)
	Special register (SD)		10	12000 points (fixed)
No. of index register points	Index register (Z)*2		10	24 points
	Long index register (LZ)*2		10	12 points
No. of file register points	File register (R)		10	32768 points (can be changed with a parameter)**
	Extended file register (ER)		10	32768 points (are stored in SD memory card)
No. of nesting points	Nesting (N)		10	15 points (fixed)
No. of pointer points	Pointer (P)		10	4096 points
	Interrupt pointer (I)		10	32 points
Others	Decimal constant (K)	Signed	-	16 bits: -32768 to $+32767,32$ bits: -2147483648 to +2147483647
		Unsigned	-	16 bits: 0 to 65535,32 bits: 0 to 4294967295
	Hexadecimal constant (H)		-	16 bits: 0 to FFFF, 32 bits: 0 to FFFFFFFF
	Real constant (E)	Single precision	-	E-3.40282347+38 to E-1.17549435-38, 0, E1. $17549435-38$ to E3.40282347+38
	Character string		-	Shift-JIS code max. 255 single-byte characters (256 including NULL) Unicode max. 255 characters (256 including NULL)

[^6][^7]FX5UJ CPU module performance specifications

*1: Interrupt from the intelligent function module and high-speed pulse input/output module.
*2: The value listed above indicates the number of files stored in the root folder.
*3: Clock data is retained using the power accumulated in a large-capacity capacitor incorporated into the PLC. When voltage of the large-capacity capacitor drops, clock data is no longer accurately retained. The retention period of a fully charged capacitor (electricity is conducted across the PLC for at least 30 minutes) is 15 days (ambient temperature: $25^{\circ} \mathrm{C}$). How long the capacitor can hold the data depends on the operating ambient temperature. When the operating ambient temperature is high, the holding period is short.

Number of device points

liem			Base	Max. number of point**	
No. of user device points	Input relay (X)		8	1024 points or less	The total number of X and Y assigned to input/output points is up to 256 points.
	Output relay (Y)		8	1024 points or less	
	Internal relay (M)		10	7680 points	
	Latch relay (L)		10	7680 points	
	Link relay (B)		16	2048 points	
	Annunciator (F)		10	128 points	
	Link special relay (SB)		16	2048 points	
	Step relay (S)		10	4096 points	
	Timer system \quad Timer (T)	Timer (T)	10	512 points	
	Accumulation timer system	Accumulation timer (ST)	10	16 points	
	Counter system	Counter (C)	10	256 points	
		Long counter (LC)	10	64 points	
	Data register (D)		10	8000 points	
	Link register (W)		16	1024 points	
	Link special register (SW)		16	1024 points	
No. of system device points	Special relay (SM)		10	10000 points	
	Special register (SD)		10	12000 points	
Module access device	Intelligent function module device		10	Depends on the int	Iligent function module.
No. of index register points	Index register (Z)		10	20 points	
	Long index register (LZ)		10	2 points	
No. of file register points	File register (R)		10	32768 points	
	Extended file register (ER)		10	32768 points (are s	ored in SD memory card)
No. of nesting points	Nesting (N)		10	15 points	
No. of pointer points	Pointer (P)		10	2048 points	
	Interrupt pointer (I)		10	178 points	
Others	Decimal constant (K)	Signed	-	16 bits: -32768 to +	22767, 32 bits: -2147483648 to +2147483647
		Unsigned	-	16 bits: 0 to 65535,	32 bits: 0 to 4294967295
	Hexadecimal constant (H)		-	16 bits: 0 to FFFF, 3	bits: 0 to FFFFFFFF
	Real constant (E)	Single precision	-	E-3.40282347+38	E-1.17549435-38, 0, E1.17549435-38 to E3.40282347+38
	Character string		-	Shift-JIS code max Unicode max. 255	255 single-byte characters (256 including NULL) haracters (256 including NULL)*A

Control system Item			Specification
		Stored-program repetitive operation	
Input/output control system		Refresh system (Direct access input/output allowed by specification of direct access input/output [DX, DY])	
Programming specifications	Programming language	Ladder diagram (LD), structured text (ST), function block diagram/ladder diagram (FBD/LD), sequential function chart (SFC) ${ }^{* \mathrm{~A} 2}$	
	Programming expansion function	Function block (FB), function (FUN), label programming (local/global)	
	Constant scan	0.2 to 2000 ms (can be set in 0.1 ms increments)	
	Fixed cycle interrupt	1 to 60000 ms (can be set in 1 ms increments)	
	Timer performance specifications	$100 \mathrm{~ms}, 10 \mathrm{~ms}, 1 \mathrm{~ms}$	
	No. of program executions	32	
	No. of FB files	16 (Up to 15 for user)	
Operation specifications	Execution type	Standby type, initial execution type, scan execution type, fixed-cycle execution type, event execution type	
	Interrupt type	Internal timer interrupt, input interruption, high-speed comparison match interrupt, interrupt by modules**	
Command processing time	LD X0	$34 \mathrm{~ns}{ }^{* 2}$	
	MOV D0 D1	$34 \mathrm{~ns}^{* 2}$	
Memory capacity	Program capacity	64/128 K steps**3 (128 kbytes/256 kbytes, flash memory)	
	SD memory card	Memory card capacity (SD/SDHC memory card: Max. 16 Gbytes)	
	Device/label memory	150 kbytes*A6	
	Data memory/standard ROM	5 Mbytes	
Flash memory (Flash ROM) write count		Maximum 20000 times	
File storage capacity	Device/label memory	1	
	Data memory P: No. of program files FB: No. of FB files	P: 32, FB: 16	
	SD memory card	NZ1MEM-2GBSD: 511*3	
		NZ1MEM-4GBSD, NZ1MEM-8GBSD, NZ1MEM-16GBSD: 65534*3	
Clock function	Display data	Year, month, day, hour, minute, second, day of week (leap year automatic detection)	
	Precision	Differences per month $\pm 45 \mathrm{sec} . / 25^{\circ} \mathrm{C}$ (TYP)	
No. of input/output points	(1) No. of input/output points	256 points or less/384 points or less*A4	
	(2) No. of remote I/O points	384 points or less/512 points or less*A5	
	Total No. of points of (1) and (2)	512 points or less	
Power failure retention (clock data*4)	Retention method	Large-capacity capacitor	
	Retention time	10 days (Ambient temperature: $25^{\circ} \mathrm{C}$)	
Power failure retention (device)	Power failure retention capacity	Maximum 12 k words*5	

*1: Interrupt from the intelligent function module and high-speed pulse input/output module
*2: When the program capacity is 64 k steps.
*3: The value listed above indicates the number of files stored in the root folder
*4: Clock data is retained using the power accumulated in a large-capacity capacitor incorporated into the PLC. When voltage of the large-capacity capacitor drops, clock data is no longer accurately retained. The retention period of a fully charged capacitor (electricity is conducted across the PLC for at least 30 minutes) is 10 days (ambient temperature: $25^{\circ} \mathrm{C}$). How long the capacitor can hold the data depends on the operating ambient temperature. When the operating ambient temperature is high, the holding period is short.
*5: All devices in the device (high-speed) area can be held against power failure. Devices in the device (standard) area can be held also when the optional battery is mounted.
\square Number of device points

Item			Base	Max. number of points	
No. of user device points	Input relay (X)		8	1024 points or less	The total number of X and Y assigned to input/output points is up to 256 points/384 points*A4.
	Output relay (Y)		8	1024 points or less	
	Internal relay (M)		10	32768 points (can be changed with a parameter)*1	
	Latch relay (L)		10	32768 points (can be changed with a parameter)*1	
	Link relay (B)		16	32768 points (can be changed with a parameter)*1	
	Annunciator (F)		10	32768 points (can be changed with a parameter)*1	
	Link special relay (SB)		16	32768 points (can be changed with a parameter)*1	
	Step relay (S)		10	4096 points (fixed)	
	Timer system	Timer (T)	10	1024 points (can be changed with a parameter)*1	
	Accumulation timer sy	Accumulation timer (ST)	10	1024 points (can be changed with a parameter)*1	
	Counter system	Counter (C)	10	1024 points (can be changed with a parameter)*1	
		Long counter (LC)	10	1024 points (can be changed with a parameter)*1	
	Data register (D)		10	8000 points (can be changed with a parameter)*1	
	Link register (W)		16	32768 points (can be changed with a parameter)*1	
	Link special register (SW)		16	32768 points (can be changed with a parameter)*1	
No. of system device points	Special relay (SM)		10	10000 points (fixed)	
	Special register (SD)		10	12000 points (fixed)	
Module access device	Intelligent function module device		10	65536 points (designated by U $\square \backslash G \square$)	
No. of index register points	Index register (Z)*2		10	24 points	
	Long index register (LZ)*2		10	12 points	
No. of file register points	File register (R)		10	32768 points (can be changed with a parameter)*1	
	Extended file register (ER)		10	32768 points (are stored in SD memory card)	
No. of nesting points	Nesting (N)		10	15 points (fixed)	
No. of pointer points	Pointer (P)		10	4096 points	
	Interrupt pointer (I)		10	178 points (fixed)	
No. of SFC points	SFC block device (BL)		10	32 points	
	SFC transition device (TR)		10	0 points (Used only as device comments.)	
Others	Decimal constant (K)	Signed	-	16 bits: -32768 to $+32767,32$ bits: -2147483648 to +2147483647	
		Unsigned	-	16 bits: 0 to 65535,	32 bits: 0 to 4294967295
	Hexadecimal constant (H)		-	16 bits: 0 to FFFF, 32 bits: 0 to FFFFFFFF	
	Real constant (E)	Single precision	-	E-3.40282347+38 to E-1.17549435-38, 0, E1.17549435-38 to E3.40282347+38	
	Character string		-	Shift-JIS code max. 255 single-byte characters (256 including NULL) Unicode max. 255 characters (256 including NULL)*A1	

[^8]*2: The sum of index register (Z) and long index register (LZ) is 24 words
memo

CPU Performance

The CPU module has excellent built-in functions to respond to various types of control.
In addition, an Ethernet port, SD memory card slot (FX5S is an option), etc. are mounted as standard equipment.
The Ethernet port is compatible with CC-Link IE Field Network Basic and can be connected to a wide variety of equipment.

CPU module

In pursuit of high basic performance and simple model selection, ease of use and simplicity are condensed into a single module.

High-speed counter function (max. 8 ch)	Positioning function (max. 4 axes)
Ethernet port	USB (Mini-B) connector

FX5U High functioning all-in-one model

As an all-rounder CPU, this module can help introducing loT to facilities and equipments in any scenes.

$\begin{array}{l}\text { Max. number of } \\ \text { control points }\end{array}$	Program capacity	Pulse train	Max.	$\begin{array}{c}\text { Command } \\ \text { processing time }\end{array}$
$\mathbf{2 5 6}$ points	$\mathbf{4 8}$ k steps	$\mathbf{2 0 0}$ kps $\mathbf{3}$ axes	$\mathbf{3 4}$ ns	

200 kpps 3 zes 34 ns FX50, High function entry model

Equipped with variety of built-in functions while demonstrating excellence in cost performance, this single module is recognized for its ease of use.

Max. number of control points 512* points

FX5UC

High function compact model
Compact housing helps save space in panels. A lineup of spring clamp terminal blocks has also been added.

| High-speed counter function (max. 8 ch) Positioning function (max. 4 axes)
 Ethernet port RS-485 port
 SD memory card slot | \begin{tabular}{\|c}
\hline
\end{tabular} |
| :---: | :---: |

[^9]
Built-in interface

Built-in Ethernet port

- The Ethernet port can handle communication with up to 8 connections on the network
- It also supports CC-Link IE Field Network Basic.

Ethernet communication function		Number of connectable stations/modules	
		FX5S/FX5UJ	FX5U/FX5UC
MELSOFT connection*1		Up to 8 stations in total	Up to 8 stations in total
SLMP	3E frame		
	1E frame*2		
Predefined protocol support			
Socket communication			
MODBUS/TCP communication (Master station/slave station)*2			
CC-Link IE Field Network Basic*2		8 stations	16 stations
Simple CPU communication function*2		8 modules	16 modules
File transfer function*2	FTP server*3	Total 1 modules	Total 1 modules
	FTP client*3		
Time setting function (SNTP client)*2		1 modules	1 modules
Web server*2	System Web page	Up to 4 modules in total	Up to 4 modules in total
	User Web page*3		
Real-time monitoring function*2		1 modules	1 modules

Built-in RS-485 port (with MODBUS/RTU communication)

- Built-in RS-485 port allows for communication with inverters, etc. - MODBUS/RTU communication is also supported. It can connect to MODBUS compatible devices such as PLCs and temperature controllers.

Built-in USB (Mini-B) connector

- A USB (Mini-B) connector for programming interface is provided as standard.

Built-in SD memory card slot (FX5S is an option)

- The built-in SD memory card slot is convenient for updating programs and mass producing products.

RUN/STOP/RESET switch

- Equipped with a RUN/STOP/ RESET switch, the device can be rebooted without turning off the main power for debugging.
(2) Built-in analog input/output (with alarm output)

- The FX5U has built-in 12-bit 2 ch analog voltage input and 1 ch analog voltage output.
(7) Program area is securely set aside

Memory area for each application

- Data areas of memory are reserved for each application.
- Can write programs without worrying about memory for comments, etc.
[Maximum number of characters]
Comments: 1024 characters
Statements: 5000 characters

Device values can be saved when an error occurs
Memory dump function*1*2

- Device values can be saved in a batch to an SD memory card when an error occurs.
- Saved data can be checked on the program editor.
- This provides powerful support for troubleshooting when errors occur.

Firmware can be upgraded
Firmware update function

\square When using an SD memory card EXSS EXSUS FXSU EXSUC

- When using GX Works3 EX5S

- The firmware version can be upgraded without replacing the CPU module in use.
- Provide update files free of charge*3.

Back up data in case of an emergency

Back up data in case of an emergency!

Restoration is possible even without a PC!

- Data can be backed up/restored at any time.
- If data memory is backed up to an SD memory card, the device can be restored when the CPU module is turned ON.
- If the CPU module fails, it can recover promptly without a PC.
() Allows for batch collection of logs from distant factories

File transfer function [FTP server*2/FTP client*2] $\square+$ SD

- Using the file transfer function instruction, you can transfer logging files, etc., and obtain data from the server without complicated settings and operations in the upper system (FTP server).
(2) Reduces changeover time and improves production efficiency on small production lines with multiple products

- Recipe files can be acquired in the SD memory card by connecting to an FTP server.
- Simply enable the FTP client function and add the program to acquire the recipe file.

File operation instructions ${ }^{* 2}\left[\begin{array}{l}\text { Data read from a } \\ \text { specified file (SP.FREAD) }\end{array}\right] \square+\square$

- Multiple recipe files on an SD memory card can be switched to read values into the device.
- Automatic switching of recipe data is possible, reducing setup loss time.

[^10]Device status can be checked from a smartphone or tablet
Web server function*1
System Web page
User Web page $\quad \therefore+$ SD

- No program needed. An easy diagnosis just by accessing PLC!
- Even without a PC or engineering tools, the status can easily be checked with a smartphone or tablet.
- Simple diagnosis provides sufficient preparation prior to on-site surveys for efficient maintenance.

User Web page drawing tool

Many sample screens and parts are available.

Even easier to use with improved controllability!*A7

- Button menus adopted.
- Parts can be selected by dragging the mouse.
- The Apply button makes the changes clear.
- User Web pages can also be created using HTML.

- User Web pages can be created in two ways, with a drawing tool or with HTML.
- With the user Web page drawing tool, Web pages can be created by combining sample screens and parts.

[^11][^12]

- Prevents data theft, tampering, misoperation, and illegal execution, etc. caused by unauthorized access from third parties.
- Programs cannot be executed on a CPU module without a registered security key, preventing program leakage.
(2) Prevents unauthorized access via network

IP filter function*1

- Prevents access from devices other than authorized devices by registering the IP addresses of devices that can access the CPU module.
- Reduces the risk of unauthorized hacking or data tampering by third parties.

Possible to send and receive device data without programs
Simple CPU communication function*1

- Using a simple parameter setting with GX Works3 as the master, device data such as production data can be transferred without a program.
- The CPU module can easily perform communication with existing systems that use the MELSEC iQ-R series, Q series, L series, FX3 series, or another company's PLC.
(3) Operation of Ethernet-equipped modules can be monitored

SLMP communication

- Seamless communication like a single network using a common protocol, SLMP*1(3E/1E*2 frame). Information can be easily collected and equipment monitored and maintained from anywhere in the office or at worksites.

(2) Troubleshooting can even be performed remotely

Remote maintenance

- GX Works3 can be connected via VPN, and programs can be read/written
- Troubleshooting can be performed from a remote place, which leads to a reduction in maintenance costs.
() Possible to send and receive data to/ from the PC

Socket communication

- Data communication with Ethernet-connected devices is possible via TCP or UDP.

[^13]
SD memory card module (option)
 NEW FX5-SDCD FX5S

(2) Required when using SD memory card with FX5S CPU module

- SD memory card module enables expansion of IoT
functions (data collection, remote monitoring, etc.).
- SD memory cards are available. For details, refer to P15.
() Can be used with expansion boards

- The cover can be cut off and attached to the upper section of other expansion boards.

Spring clamp terminal block used in many modules

© Spring clamp advantages

- Spring force holds wires in place, preventing wires from falling out due to vibration.
- There is no need for crimp terminals or crimp tools. Wiring is possible without extra time or cost.
- No external terminal block is needed. Easily detachable \& securely fixed by a lock lever.

For ferrule terminals of FX5UC CPU module, the following is introduced.
(Reference product: PHOENIX CONTACT GmbH \& Co. KG*)

Model	Type	
CRIMPFOX 6	Crimp tool	Wire size $0.5 \mathrm{~mm}^{2}$
AI 0.5-10 WH	Crimp terminal (Ferrule with insulation sleeve)	Wire size $0.75 \mathrm{~mm}^{2}$
AI 0.75-10 GY	Crimp terminal (Ferrule without	
A 1.0-10	Wire size $1.0 \mathrm{~mm}^{2}$	
A 1.5-10	Wire size $1.5 \mathrm{~mm}^{2}$	

[^14]List of Built-in Functions by CPU Module

Function		Content	CPU module*1				
		FX5S	FX5UJ	FX5U	FX5UC		
Data collecting function							
Data logging function			Collects data at the specified interval or any desired timing, and stores them as a file on the SD memory card.	$\triangle^{* 2}$	\checkmark	\checkmark	\checkmark
Memory dump function		Saves the data in the devices of the CPU module at a desired timing.	$\triangle^{* 2}$	\checkmark	\checkmark	\checkmark	
Communication function							
Built-in Ethernet function		An Ethernet related function such as connection to MELSOFT products and GOTs, socket communication, file transfer function (FTP server, FTP client), Web server (HTTP), SNTP client, and simple CPU communication function. For details, refer to P52 [General-purpose Ethernet].	\checkmark	\checkmark	\checkmark	\checkmark	
CC-Link IE Field Network Basic function		Exchanges data between the master station and remote station using general-purpose Ethernet.	\checkmark	\checkmark	\checkmark	\checkmark	
Serial communication function		A function related to the serial communication such as N:N Network, parallel link, MC protocol, inverter communication function and non-protocol communication.	$\checkmark * 3$	$\checkmark * 3$	\checkmark	\checkmark	
MODBUS communication function		Connection with the products which support MODBUS RTU/TCP is available. The master and slave functions can be used.	\checkmark	\checkmark	\checkmark	\checkmark	
High-speed input/output function							
High-speed counter function		Performs high-speed counter, pulse width measurement, input interruption, etc. by using the input of the CPU module or high-speed pulse input/output module.	\checkmark	\checkmark	\checkmark	\checkmark	
Positioning function		Executes positioning operation by using the transistor output of the CPU module or high-speed pulse input/output module.	\checkmark	\checkmark	\checkmark	\checkmark	
Analog function							
Analog input function		Voltage input/output can be performed with analog input and analog output.	-	-	\checkmark	-	
Analog output function		Volage inputoutput can be performed with analog input and analog output.					
Feedback control							
PID control function		PID control commands provide feedback control for analog changes in temperature, pressure, water volume, etc.	\checkmark	\checkmark	\checkmark	\checkmark	
PID control via parameter function		Performs PID control (standard PID control, heating-cooling PID control) by using GX Works3 parameters.	-	-	\checkmark	\checkmark	
Security functions							
Security functions		Protects resources stored in PCs and resources in the units in the system of the FX5 from illegal access by a third party such as theft, alteration, accidental operation and unauthorized execution.	\checkmark	\checkmark	\checkmark	\checkmark	
IP filter function		Identifies the IP address of external devices over Ethernet, and blocks access from an invalid IP address.	\checkmark	\checkmark	\checkmark	\checkmark	
Maintenance function							
Firmware update function		Updates the firmware of the module. Only FX5S can be updated with firmware from GX Works3 without an SD memory card.	$\checkmark * 2$	\checkmark	\checkmark	\checkmark	
Scan monitoring function (watch dog timer setting)		Detects an error in the hardware and program of the CPU module by monitoring the scan time.	\checkmark	\checkmark	\checkmark	\checkmark	
Memory card function	Boot operation	Transfers the file stored in the SD memory card to the transfer destination memory judged automatically by the CPU module when the power is turned ON or is reset.	$\triangle^{* 2}$	\checkmark	\checkmark	\checkmark	
Real-time monitoring function		Monitors the data in the specified device of the CPU module at a specified interval or at a desired timing in real time.	\checkmark	\checkmark	\checkmark	\checkmark	
RAS function	Event history function	Collects operations executed and errors detected from the modules, and saves them in the CPU module, expansion board, expansion adapter, and intelligent module. The saved logs can be checked in chronological order.	\checkmark	\checkmark	\checkmark	\checkmark	
Data backup/restoration function		Backs up program files, parameter files, and device/label data files in a CPU module to an SD memory card. The backup data can be restored as needed.	$\triangle^{* 2}$	\checkmark	\checkmark	\checkmark	
Program function							
Constant scan		Keeps the scan time constant and executes program repeatedly.	\checkmark	\checkmark	\checkmark	\checkmark	
Initial device value setting		Sets the initial values of devices used in the program directly (not via the program) to the devices.	\checkmark	\checkmark	\checkmark	\checkmark	

[^15]memo

. 4
 Analog Control

Using analog input and output devices, operations such as input and output of analog quantities
(voltage, current, etc.), temperature input and adjustment, etc. can be performed.
Use the ample lineup of extension modules for analog control that matches your applications.

List of models

Analog functions built into the FX5U CPU module

FX5U CPU module

(2) Analog input/output supported on the module itself

- With built-in 12-bit 2 ch analog voltage input and 1 ch analog voltage output.
- No programming is required, just parameter setting. Reduce programming man-hours.

30 - Equipped with an alarm output function. When the value enters the alarm output range, an alarm output.

Temperature sensor, etc.

Analog input

() Additional equipment can be added to suit any application

```
Conversion speed comparison*2
```


- Additional equipment can be added according to the application (equipment requirements).
(2) Capable of monitoring equipment status

- Supports input signal abnormality detection and alarm output functions.
- Easily monitor the status of connected devices.

IAnalog output

With the FX5-4DA, the waveform output function achieves smooth waveform output

- The operator can update analog output values in the D/A conversion cycle without depending on the scan time.
- The operator can register waveform output data in the analog output module, and repeatedly use it.
*1: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.
*2: The conversion speed of the expansion adapter varies according to scan time.

Temperature input

- Compatible with resistance temperature detectors (Pt100, Ni100) and temperature sensors.
- Capable of measuring 4 channels with a resolution of $0.1^{\circ} \mathrm{C}$.

Multiple input

(2) Various applications can be handled
by this single module

- Input type can be set per channel.
- Uses a spring clamp terminal block.

Immediate response to disconnection

- Thermocouple and resistance temperature detector disconnection can be easily detected.
- Downtime due to disconnection can be reduced.

[^16]Temperature control

4 channel temperature control is possible

- Input type can be set per channel.
- Supports PID control and suppress overshoot.
(2) Visible changes in food temperature [Temperature trace]

- Temperature changes can be checked using a waveform.
- Parameters can be adjusted while checking the displayed temperature waveform.

Performance comparison table

Analog input (voltage, current) specification

\checkmark : Supported, —: Not supported

Analog output (voltage, current) specification

: Supported, 一: Not supported

				Specification			plicable	U mod	
Analog dev			External load	Output property (varies according	to output range)				
		Anaiog output	resistance value	Digital output value	Maximum resolution	FX5s	FXbuJ	FX5U	FXSUC
FX5U CPU module	Voltage	0 to 10 V DC	2 k to $1 \mathrm{M} \Omega$	0 to 4000	2.5 mV			\checkmark	
(built-in)	Current	-	-	-	-				
FX5-4A ADP	Voltage	-10 to +10 V DC	1 k to $1 \mathrm{M} \Omega$	0 to 16000 (1 to 5 V)	$250 \mu \mathrm{~V}$				
FXS-4A-ADP	Current	0 to 20 mA DC	0 to 500Ω	0 to 16000 (4 to 20 mA)	$1 \mu \mathrm{~A}$				
FX5-4DA-ADP	Voltage	-10 to +10 V DC	1 k to $1 \mathrm{M} \Omega$	0 to 16000 (1 to 5 V)	$250 \mu \mathrm{~V}$	\checkmark	\checkmark	\checkmark	\checkmark
	Current	0 to 20 mA DC	0 to 500Ω	0 to 16000 (4 to 20 mA)	$1 \mu \mathrm{~A}$				
FX5-4DA	Voltage	-10 to +10 V DC	1 k to $1 \mathrm{M} \Omega$	-32000 to +32000 (user range setting)	$312.5 \mu \mathrm{~V}$				\checkmark
FXS-4DA	Current	0 to 20 mA DC	0 to 500Ω	-32000 to +32000 (user range setting)	500 nA				
	Voltage	-10 to +10 V DC	1 k to $1 \mathrm{M} \Omega$	-32000 to $+32000(-10$ to $+10 \mathrm{~V})$	0.32 mV				
FX3U-4DA	Current	$\begin{array}{\|l\|} \hline 0 \text { to } 20 \mathrm{~mA} \mathrm{DC,} \\ 4 \text { to } 20 \mathrm{~mA} \mathrm{DC} \\ \hline \end{array}$	500Ω or less	0 to 32000 (0 to 20 mA)	$0.63 \mu \mathrm{~A}$	-	-	\checkmark	\checkmark

Temperature sensor input specification (resistance temperature detector Pt100)

Analog device	Specification				Applicable CPU module			
	Analog input value		Analog output value		FX5S	FX5UJ	FX5U	FX5UC
	Measuring temperature range (degrees Celsius $\left.\left({ }^{\circ} \mathrm{C}\right)\right)^{* 2}$	Precision (ambient temperature $25 \pm 5^{\circ} \mathrm{C}$)	Digital output value	Resolution				
FX5-4AD-PT-ADP	-200 to $+850^{\circ} \mathrm{C}$	$\pm 0.8^{\circ} \mathrm{C}$	-2000 to +8500	$0.1^{\circ} \mathrm{C}$	\checkmark	\checkmark	\checkmark	\checkmark
FX5-8AD	-200 to $+850^{\circ} \mathrm{C}$	$\pm 0.8^{\circ} \mathrm{C}$	-2000 to +8500	$0.1^{\circ} \mathrm{C}$	-	\checkmark	\checkmark	\checkmark
FX5-4LC	-200 to $+600^{\circ} \mathrm{C}$	■lnput range: Less than $200^{\circ} \mathrm{C}$ $\pm 0.6^{\circ} \mathrm{C} \pm 1$ digit ■Input range: $200^{\circ} \mathrm{C}$ or more $\pm(0.3 \%$ of display value $) \pm 1$ digit	-	$\begin{aligned} & 0.1^{\circ} \mathrm{C} \\ & 1.0^{\circ} \mathrm{C}^{* 3} \end{aligned}$	-	\checkmark	\checkmark	\checkmark
FX3U-4LC	$\begin{aligned} & -50.0 \text { to }+150.0^{\circ} \mathrm{C}, \\ & -200.0 \text { to }+600.0^{\circ} \mathrm{C} \end{aligned}$	-Input range: Less than $200^{\circ} \mathrm{C}$ $\pm 0.6^{\circ} \mathrm{C} \pm 1$ digit ■Input range: $200^{\circ} \mathrm{C}$ or more $\pm(0.3 \%$ of display value $) \pm 1$ digit	-	$\begin{aligned} & 0.1^{\circ} \mathrm{C} \\ & 1.0^{\circ} \mathrm{C}^{* 3} \end{aligned}$	-	-	\checkmark	\checkmark

Temperature sensor input specification (thermocouple K)

Analog device	Specification				Applicable CPU module			
	Analog input value		Analog output value		FX5S	FX5UJ	FX5U	FX5UC
	Measuring temperature range (degrees Celsius $\left.\left({ }^{\circ} \mathrm{C}\right)\right)^{* 2}$	Precision (ambient temperature $25 \pm 5^{\circ} \mathrm{C}$)	Digital output value	Resolution				
FX5-4AD-TC-ADP	-200 to $+1200^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 3.7^{\circ} \mathrm{C}\left(-100 \text { to }+1200^{\circ} \mathrm{C}\right)^{* 4}, \\ & \pm 4.9^{\circ} \mathrm{C}\left(-150 \text { to }-100^{\circ} \mathrm{C}\right)^{* 4}, \\ & \pm 7.2^{\circ} \mathrm{C}\left(-200 \text { to }-150^{\circ} \mathrm{C}\right)^{* 4} \end{aligned}$	-2000 to +12000	$0.1{ }^{\circ} \mathrm{C}$	\checkmark	\checkmark	\checkmark	\checkmark
FX5-8AD	-200 to $+1200^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 3.5^{\circ} \mathrm{C}\left(-200 \text { to }-150^{\circ} \mathrm{C}\right), \\ & \pm 2.5^{\circ} \mathrm{C}\left(-150 \text { to }-100^{\circ} \mathrm{C}\right), \\ & \pm 1.5^{\circ} \mathrm{C}\left(-100 \text { to }+1200^{\circ} \mathrm{C}\right) \end{aligned}$	-2000 to +12000	$0.1{ }^{\circ} \mathrm{C}$	-	\checkmark	\checkmark	\checkmark
FX5-4LC	-200 to $+1300^{\circ} \mathrm{C}$	■Input range: Less than $-100^{\circ} \mathrm{C}$ $\pm 3.0^{\circ} \mathrm{C} \pm 1$ digit EInput range: - 100 to less than $+500^{\circ} \mathrm{C}$ $\pm 1.5^{\circ} \mathrm{C} \pm 1$ digit ■Input range: $500^{\circ} \mathrm{C}$ or more $\pm(0.3 \%$ of display value) ± 1 digit	-	$\begin{aligned} & 0.1^{\circ} \mathrm{C}, \\ & 1.0^{\circ} \mathrm{C}^{* 3} \end{aligned}$	-	\checkmark	\checkmark	\checkmark
FX3U-4LC	$\begin{aligned} & -200.0 \text { to }+200.0^{\circ} \mathrm{C}, \\ & -100.0 \text { to }+400.0^{\circ} \mathrm{C}, \\ & -100 \text { to }+1300^{\circ} \mathrm{C} \end{aligned}$	■Input range: Less than $-100^{\circ} \mathrm{C}$ $\pm 3.0^{\circ} \mathrm{C} \pm 1$ digit ■Input range: - 100 to less than $+500^{\circ} \mathrm{C}$ $\pm 1.5^{\circ} \mathrm{C} \pm 1$ digit ■Input range: $500^{\circ} \mathrm{C}$ or more $\pm(0.3 \%$ of display value $) \pm 1$ digit	-	$\begin{aligned} & 0.1^{\circ} \mathrm{C} \\ & 1.0^{\circ} \mathrm{C}^{* 3} \end{aligned}$	-	-	\checkmark	\checkmark

[^17]\square Micro voltage input specification
\checkmark : Supported, 一: Not supported

Analog device	Specification					Applicable CPU module			
	Micro voltage input	Precision			Resolution	FX5S	FX5UJ	FX5U	FX5UC
		$25 \pm 5^{\circ} \mathrm{C}$ ambient temperature	0 to $55^{\circ} \mathrm{C}$ ambient temperature	-20 to $0^{\circ} \mathrm{C}$ ambient temperature					
FX5-4LC	0 to 10 mV DC, 0 to 100 mV DC	$\begin{aligned} & \pm(0.3 \% \text { of span) } \\ & \pm 1 \text { digit } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm(0.7 \% \text { of span }) \\ & \pm 1 \text { digit } \end{aligned}$	$\begin{aligned} & \pm(0.9 \% \text { of span) } \\ & \pm 1 \text { digit } \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \mu \mathrm{~V}, \\ & 5.0 \mu \mathrm{~V} * 1 \end{aligned}$	-	\checkmark	\checkmark	\checkmark
FX3U-4LC	0 to 10 mV DC, 0 to 100 mV DC	$\begin{aligned} & \pm(0.3 \% \text { of span }) \\ & \pm 1 \text { digit } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm(0.7 \% \text { of span }) \\ & \pm 1 \text { digit } \end{aligned}$	-	$\begin{aligned} & 0.5 \mu \mathrm{~V}, \\ & 5.0 \mu \mathrm{~V} * 1 \end{aligned}$	-	-	\checkmark	\checkmark

Analog device function compatibility table

: Supported, —: Not supported

Specification	Analog device									
	Input/output mixing		Input		Output		Input Temperature sensor input			Temperature control
	FX5U CPU Module (built-in)	FX5-4A-ADP	FX5-4AD-ADP	FX5-4AD	FX5-4DA-ADP	FX5-4DA	FX5-8AD	$\begin{gathered} \text { FX5-4AD-TC- } \\ \text { ADP } \\ \hline \end{gathered}$	$\begin{aligned} & \text { FX5-4AD-PT- } \\ & \text { ADP } \\ & \hline \end{aligned}$	FX5-4LC*2
Range switching function	-	\checkmark	-							
Conversion enable/ disable setting function	\checkmark	-								
Conversion method	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark	\checkmark	-
Analog output HOLD/ CLEAR function	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-
Analog Output Test when CPU Module is in STOP Status Function	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-
Over scale detection function	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-
Scaling function	\checkmark	-	-	-						
Shift function	\checkmark	-	-	-						
Digital clipping function	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	-	-
Maximum value/ minimum value hold function	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark	\checkmark	-
Warning output function	\checkmark	-								
Rate control function	-	-	-	-	-	\checkmark	-	-	-	-
Input signal error detection function	-	-	-	\checkmark	-	-	\checkmark	-	-	-
External power supply disconnection detection function	-	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-
Disconnection detection function	-	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Convergence detection function	-	\checkmark	\checkmark	-	-	-	-	-	-	-
Deviation detection between channel function	-	\checkmark	\checkmark	-	-	-	-	-	-	-
Logging function	-	-	-	\checkmark	-	-	\checkmark	-	-	-
Logging read function	-	-	-	\checkmark	-	-	-	-	-	-
Interrupt function	-	-	-	\checkmark	-	\checkmark	-	-	-	-
Error history function	-	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark
Wave output function	-	-	-	-	-	\checkmark	-	-	-	-
Event history function	\checkmark	\checkmark	-	-	\checkmark	-	-	\checkmark	\checkmark	-
Offset/gain setting function	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	-
Offset/gain initialization function	-	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-
2 CH conversion mode function	-	-	-	-	-	-	\checkmark	-	-	-

Positioning Control

The CPU module has a built-in positioning function.
Complex multi-axis and interpolation control can be performed using the positioning module and simple motion module.

List of models

Built-in positioning

FX5S/FX5UJ/FX5U/FX5UC CPU module

[Example of box-packing machine using the positioning function built in the FX5U CPU module]

- Positioning function is built into CPU module (transistor output type only).
- Allows for building systems at low cost with only a single CPU module.

Positioning module (high-speed pulse input/output module extension)

Possible to add the number of axes available for the positioning function

- Further multi-axis control is possible by adding to the FX5UJ/FX5U/FX5UC CPU module.

Positioning module

(1) S-curve acceleration/deceleration allows for transfer of products without tipping them over

- Acceleration/deceleration processing can be selected from two methods, trapezoidal and S-curve acceleration/ deceleration, and four types of acceleration and deceleration times can be set for each.

(3) Allows for high-speed starts

-Comparison of starting times for 1-axis linear control
प्याELSECFF series
FX2N-20GM
MELSEC iQ-F
FX5-20PG-P,

- The high-speed normal positioning starting process speed can shorten the starting time to 0.5 ms .
(2) The maximum pulse output is 5 Mpps , and the connection distance is $10 \mathrm{~m}^{* 3}$
- With maximum output pulses of 5 Mpps for the FX5-20PG-D, control is possible for devices with higher resolutions than conventional products.
- The maximum connection distance between servos is $10 \mathrm{~m}^{* 3}$.
(2) Quick start function supported

- By analyzing positioning data in advance, positioning can be started at a high-speed of maximum $20 \mu \mathrm{~s}$.

- By using a motion module and the high-performance servo amplifier MELSERVO-J5 series, advanced positioning control can be supported
- Simple motion module programs can be used. This reduces programming man-hours.

- It can be used for various purposes by combining linear interpolation, 2-axis circular interpolation, constant quantity feed, and continuous path control in a point table-based program.

[^18]
Synchronous operation enables extra controls

- Synchronous control and cam control can be used to build a system perfect for your equipment.
- Up to 128 types $^{* B 4}$ of cam data can be registered to respond quickly to any type of contents (fillings).
- Continuous operation can be performed without stopping the workpiece.

(2) Capable of reading/cutting fast moving register marks

- The real current position of the servo motor can be obtained by reading the register marks on the wrapping paper when it is moving at high speed.
- By compensating for misalignment of the cutter axis when register marks are input, wrapping paper can be cut at a constant position.

(7) Easy creation of cam data with auto-generation

- Cam data can be automatically generated simply by inputting sheet length, synchronization width, and cam resolution, etc.
- Saving the cam data in the cam save area enables use of the last cam data even after power-off.
- The larger the memory capacity, the greater the variety of settings can be used. The larger the memory capacity, the finer the position control.

[^19]
CC-Link IE Field Network Basic connection

(2) Easy FX5 and MELSERVO connection

- CPU module and MELSERVO-JET can be connected by CC-Link IE Field Network Basic.
- Free sample programs are available.
- An easy-to-follow connection guide helps you understand the setup procedure at a glance.
(7) FB compatible with PLCopen ${ }^{\circledR}$ reduces programming man-hour

- Programming can be done using the PLCopen ${ }^{\circledR}$ Motion Control FB library, an international standard.
- From the logged data, GX LogViewer can analyze the operation status, which improves the efficiency of debugging
- FB makes it easier for third parties to utilize data.

Electric actuator connection

(2) Support tools make actuator setup easy

- "Predefined protocol support tool for positioning" and "Predefined protocol support FBs for positioning" are provided for free.
- Programming man-hours can be reduced by using the support tools or FB.
(2) Support tools and FB can facilitate fine-tuning in case of trouble

- A communication protocol can be set only by selecting the model.
- You can adjust the positioning operation connected by each manufacturer while monitoring the operation of the electric actuator.

Comparison of positioning control-related product specifications

Category	Product model	Positioning system	Max. number of axes	Linear interpolation	Circular interpolation	Synchronous control
CPU module built-in positioning	FX5S CPU module	Pulse train (transistor output)	4 axes $\times 100 \mathrm{kpps}$	\checkmark	-	-
	FX5UJ CPU module	Pulse train (transistor output)	3 axes $\times 200 \mathrm{kpps}$	-	-	-
	FX5U/FX5UC CPU module	Pulse train (transistor output)	4 axes $\times 200 \mathrm{kpps}$	\checkmark	-	-
High-speed pulse input/output module	FX5-16ET/ES-H	Pulse train (transistor output)	2 axes $\times 200 \mathrm{kpps}$	\checkmark	-	-
	FX5-16ET/ESS-H	Pulse train (transistor output)	2 axes $\times 200 \mathrm{kpps}$	\checkmark	-	-
Positioning module	FX5-20PG-P	Pulse train (transistor output)	2 axes $\times 200 \mathrm{kpps}$	\checkmark	\checkmark	-
	FX5-20PG-D	Pulse train (differential driver output)	2 axes $\times 5 \mathrm{Mpps}$	\checkmark	\checkmark	-
Motion module	FX5-40SSC-G	Network (CC-Link IE TSN)	4 axes	\checkmark	\checkmark	\checkmark
	FX5-80SSC-G	Network (CC-Link IE TSN)	8 axes	\checkmark	\checkmark	\checkmark
Simple motion module	FX5-40SSC-S	Network (SSCNET III/H)	4 axes	\checkmark	\checkmark	\checkmark
	FX5-80SSC-S	Network (SSCNET III/H)	8 axes	\checkmark	\checkmark	\checkmark
Ethernet	FX5S CPU module	Network (CC-Link IE Field Network Basic)	8 axes	-	-	-
	FX5UJ CPU module	Network (CC-Link IE Field Network Basic)	8 axes	-	-	-
	FX5U/FX5UC CPU module	Network (CC-Link IE Field Network Basic)	16 axes	-	-	-
	FX5-ENET	Network (CC-Link IE Field Network Basic)	32 axes	-	-	-
Serial communication	FX5U/FX5UC CPU module	Network (RS-485)	32 axes	-	-	-
	$\begin{aligned} & \text { FX5-485-BD } \\ & \text { FX5-485ADP } \end{aligned}$	Network (RS-485)	32 axes	-	-	-

תム II

High-speed Counter Control

The high-performance, high-speed counter built-in the CPU module allows for high-speed control with simple programs.
Channels can be added using high-speed pulse I/O modules.

List of models

		Number of channels	Input format/input voltage	Type/max. frequency
CPU module (built-in high-speed counter)	FX5S/FX5UJ CPU module	Max. 8 ch 1-phase 1 -input $100 \mathrm{kHz}: 4 \mathrm{ch}$ $10 \mathrm{kHz}: 4 \mathrm{ch}$	Open collector 24 V DC	1-phase 1 -input : $100 \mathrm{kHz}{ }^{*}$ 1-phase 2-input : $100 \mathrm{kHz}{ }^{*}$ 2-phase 2-input [1 edge count] : $100 \mathrm{kHz}{ }^{*}$ 2-phase 2 -input [2 edge count] : $50 \mathrm{kHz*}$ 2-phase 2 -input [4 edge count] : $25 \mathrm{kHz}^{*}$
CPU module (built-in high-speed counter)	FX5U/FX5UC CPU module	Max. 8 ch FX5U-32Mロ/FX5UC-32M \square 1-phase 1-input $200 \mathrm{kHz}: 6 \mathrm{ch}$ 10 kHz : 2 ch	Open collector 24 V DC	1-phase 1 -input : $200 \mathrm{kHz}{ }^{*}$ 1-phase 2-input : $200 \mathrm{kHz}{ }^{*}$ 2-phase 2-input [1 edge count] : $200 \mathrm{kHz}{ }^{*}$ 2-phase 2 -input [2 edge count] : $100 \mathrm{kHz}{ }^{*}$ 2-phase 2-input [4 edge count] : 50 kHz *
High-speed pulse input/output module	1 \square FX5-16ET/ES-H. FX5-16ET/ESS-H	Max. 2 ch	Open collector 24 V DC	1 -phase 1 -input : 200 kHz 1 -phase 2 -input : 200 kHz 2-phase 2 -input [1 edge count] : 200 kHz 2-phase 2-input [2 edge count] : 100 kHz 2-phase 2 -input [4 edge count] : 50 kHz
High-speed counter block	\| FX3U-2HC	Max. 2 ch	Open collector 5 V/12 V/24 V DC Differential line driver 5 V DC	1-phase 1-input: 200 kHz 1-phase 2 -input : 200 kHz 2-phase 2-input [1 edge count] : 200 kHz 2-phase 2-input [2 edge count] : 100 kHz 2-phase 2 -input [4 edge count] : 50 kHz

CPU module equipped with high-speed counter function

FX5S/FX5UJ/FX5U/FX5UC CPU module

- The CPU module is equipped with a high-speed counter function.
- Allows for building systems at low cost with only a single CPU module.

Additional high-speed counter channels are available

(2) Supports up to 16 ch high-speed pulse input

- The number of channels used for high-speed counters can be increased.

High-speed counter function and positioning function can be used together

- The high-speed counter function and positioning function can be used together, increasing possible applications.
- The input/output not used for the high-speed counter function and positioning function can be used for general-purpose inputs and outputs.

High-speed input function specification comparison table

Function		CPU module			$\begin{aligned} & \text { FX5-16ET/ES-H**2 } \\ & \text { FX5-16ET/ESS-H* }{ }^{*}+2 \end{aligned}$	
		FX5S	FX5UJ	FX5U, FX5UC		
High-speed Counter Function						
Number of channels		8 (CH 1 to CH 8$)$	8 (CH1 to CH8)	8 (CH1 to CH8)	Max. 8 (CH9 to CH16)	
Maximum frequency	1-phase 1 input counter (S/W)	100 kHz	100 kHz	200 kHz	200 kHz	
	1-phase 1 input counter (H/W)	100 kHz	100 kHz	200 kHz	200 kHz	
	1-phase 2 input counter	100 kHz	100 kHz	200 kHz	200 kHz	
	2-phase 2 input counter [1 edge count]	100 kHz	100 kHz	200 kHz	200 kHz	
	2-phase 2 input counter [2 edge count]	50 kHz	50 kHz	100 kHz	100 kHz	
	2-phase 2 input counter [4 edge count]	25 kHz	25 kHz	50 kHz	50 kHz	
Operation mode	Normal mode	\checkmark	\checkmark	\checkmark	\checkmark	
	Pulse density measurement mode	\checkmark	\checkmark	\checkmark	-	
	Rotational speed measurement mode	\checkmark	\checkmark	\checkmark	-	
Input comparison	High-speed comparison table	\checkmark	\checkmark	\checkmark	\checkmark	
	Multiple point high-speed comparison table	\checkmark	\checkmark	\checkmark	-	
High-speed counter instructions	Setting 32-bit data comparison	\checkmark	\checkmark	\checkmark	-	
	Reset 32-bit data comparison	\checkmark	\checkmark	\checkmark	-	
	Comparison of 32-bit data band	\checkmark	\checkmark	\checkmark	-	
	Start/stop of the 16/32-bit data high-speed I/O function	\checkmark	\checkmark	\checkmark	\checkmark	
	High-speed current value transfer of 16/32-bit data	\checkmark	\checkmark	\checkmark	\checkmark	
Pulse width measurement function						
Number of channels		4 (CH 1 to CH 4)	4 (CH1 to CH 4$)$	4 (CH 1 to CH 4)	Max. 8 (CH5 to CH12)	
Measurement frequencies		100 kHz	100 kHz	200 kHz	200 kHz	
Pulse catch function						
Number of input points		16 points	14 points (FX5UJ-24Mロ)	16 points	Up to 8 points	
		16 points (Other than above)				
Input response time			$10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}, 200 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}, 200 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}, 100 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}, 100 \mu \mathrm{~s}$
Input response time setting						
Input response time		No setting, $10 \mu \mathrm{~s}, 50 \mu \mathrm{~s}$, $0.1 \mathrm{~ms}, 0.2 \mathrm{~ms}, 0.4 \mathrm{~ms}$, $0.6 \mathrm{~ms}, 1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$, $20 \mathrm{~ms}, 70 \mathrm{~ms}$	No setting, $10 \mu \mathrm{~s}, 50 \mu \mathrm{~s}$, $0.1 \mathrm{~ms}, 0.2 \mathrm{~ms}, 0.4 \mathrm{~ms}$, $0.6 \mathrm{~ms}, 1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$, $20 \mathrm{~ms}, 70 \mathrm{~ms}$	No setting, $10 \mu \mathrm{~s}, 50 \mu \mathrm{~s}$, $0.1 \mathrm{~ms}, 0.2 \mathrm{~ms}, 0.4 \mathrm{~ms}$, $0.6 \mathrm{~ms}, 1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$, $20 \mathrm{~ms}, 70 \mathrm{~ms}$	No setting, $10 \mu \mathrm{~s}, 50 \mu \mathrm{~s}$, $0.1 \mathrm{~ms}, 0.2 \mathrm{~ms}, 0.4 \mathrm{~ms}$, $0.6 \mathrm{~ms}, 1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$, $20 \mathrm{~ms}, 70 \mathrm{~ms}$	
Hardware filter value	ON	$\begin{gathered} 5 \mu \mathrm{~s}, 30 \mu \mathrm{~s}, 50 \mu \mathrm{~s}, \\ 10 \mathrm{~ms} \text { or less } \\ \hline \end{gathered}$	$5 \mu \mathrm{~s}, 30 \mu \mathrm{~s}, 50 \mu \mathrm{~s}$, Approx. 10 ms	$2.5 \mu \mathrm{~s}, 30 \mu \mathrm{~s}, 50 \mu \mathrm{~s}$	$2.5 \mu \mathrm{~s}, 30 \mu \mathrm{~s}$	
	OFF	$\begin{gathered} 5 \mu \mathrm{~s}, 50 \mu \mathrm{~s}, 150 \mu \mathrm{~s}, \\ 10 \mathrm{~ms} \text { or less } \end{gathered}$	$5 \mu \mathrm{~s}, 50 \mu \mathrm{~s}, 150 \mu \mathrm{~s}$, Approx. 10 ms	$2.5 \mu \mathrm{~s}, 50 \mu \mathrm{~s}, 150 \mu \mathrm{~s}$	$2.5 \mu \mathrm{~s}, 50 \mu \mathrm{~s}$	
Increment of setting		1 point unit/8 point units	1 point unit/8 point units	1 point unit/8 point units, 8 point units	1 point unit, 8 point units	

Increment of setting
memo

E

Network/Communication/Information-sharing

The MELSEC iQ-F series has a built-in Ethernet port and a wide variety of extension devices that can communicate with various networks according to the application.
| Can communicate with various networks. The broad lineup allows for meeting the needs of any worksite.

NEW FA Integrated Selection Tool

FA Integrated Selection Tool now supports iQ-F. In addition to selecting equipment, you need to consider the configuration from the type of network.

CC-Link IE TSN

List of models

Characteristics

- CC-Link IE TSN enables coexistence of information communication with the IT system and cyclic communication where the real-time property is assured.

(2) Simple network configuration

- No need to configure every network! Since TCP/IP communication can be mixed on the same trunk line, a single network can be used.

High-speed communication with a time sharing system

- High speed is achieved by synchronizing the timing for each device and simultaneously transmitting output and input communication frames in both directions within a time sharing communication cycle.
(1) Control and information communication over a single network

- With CC-Link IE TSN, which uses TSN technology, both general-purpose control and synchronous control can use the same network. Models can be configured to match the level of control needed for each application.

[^20]
CC-Link IE Field Network

List of models

CC-Línk IE Eield


```
Characteristics
- CC-Link IE Field Network is a high-speed (1 Gbps) and high-capacity open field network that uses Ethernet (1000BASE-T).
```

(1) Can be connected to CC-Link IE Field Network as an intelligent device station

- Meets need from high-speed I/O control to controller distribution control with a single network.
- Controller distribution, I/O control, motion control, safety function, etc. can be set seamlessly.
() Wiring methods are conveniently flexible

- Connection formats, such as highly reliable ring connection or simple line connection, can be selected based on installation cost.

[^21]
CC-Línk IE Field Basic

Characteristics •CC-Link IE Field Network Basic is an FA network utilizing a general-purpose Ethernet.

Works with CC-Link IE Field Network Basic

- The CPU module is equipped with the master station function for CC-Link IE Field Network Basic, and can connect up to 16 remote stations*C1.
- Because remote I/O stations connected to CC-Link IE Field Network Basic are not included*A8 in the total number of remote I/O points, remote I/O stations can be extended without considering the number of remote I/O points.
- When the FX5-ENET module is connected, CC-Link IE Field Network Basic can be extended up to 32 stations*2.

Device stations can be grouped

- Remote stations can be grouped according to the length of response processing time.
- This makes it possible to suppress the effects of differences in the reference response time of each device station.

Works alongside general-purpose Ethernet

- A single CPU module or FX5-ENET can be connected to both CC-Link IE Field Network Basic and general-purpose Ethernet.
*3: A firmware upgrade may be required to use some functions and modules. For details, refer to appendix P77 [Function compatibility table].

Characteristics •CC-Link V2 is a world-standard open field network that can connect a variety of FA equipment.
() Equipped with master station/ intelligent device station functions

- The FX5-CCL-MS module is equipped with both the master station function and the intelligent device station function, and can be used as either station when switched by a parameter.

Seamless access to other stations

- Perform program write/read and device monitoring, etc. for another station's PLC within the same network.
- There is no need to program each module individually, and the CPU modules built into devices can be easily accessed.

Master station settings control the entire system

- When used as an intelligent device station, the transmission speed can be set to automatic following. The transmission speed automatically follows the transmission speed of the master station, preventing setting errors.

General-purpose Ethernet related

General-purpose Ethernet

List of models

Characteristics

- Ethernet is a technical standard for control networks that perform communication between the site and the factory, and connect among FA devices.

List of Ethernet functions

*1: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.
*2: A firmware upgrade may be required to use some functions and modules. For details, refer to appendix P77 [Function compatibility table].

EtherNet/IP

List of models

[^22]
Can be connected to EtherNet/IP networks

- It can seamlessly communicate with EtherNet/IP networks using the CIP communication protocol. EtherNet/IP and general-purpose Ethernet communication can coexist.
- Can be set to stop or continue EtherNet/IP communication. EtherNet/IP communication can be continued even if the CPU module is in the STOP state.

Dedicated configuration tool allows for setting of parameters for EtherNet/IP communication

- Except for EtherNet/IP communication-related settings, it can also detect EtherNet/IP devices on the network and configure EtherNet/IP communication settings online.
- A dedicated configuration tool, EtherNet/IP Configuration Tool for FX5-ENET/IP, is available. English or Japanese can be selected during installation.

[^23][^24]
BACnet

List of models

- BACnet is an open communication standard for building networks established in 1995 by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers). BACnet can be implemented together with other general Ethernet protocols.
(2) Integrated management of equipment and facilities related to building maintenance is possible

- Compatible with BACnet, an open network in the building air conditioning field.
- By using the BACnet function, it operates as a BACnet device in the BACnet system.
- Lighting, heating and air conditioning, security management systems, etc. can be controlled. This allows for construction of cost-effective air conditioning systems.

BACnet standards

Item	FX5-ENET, FX5-ENET/IP		
Profile (Role)	B-ASC		
Supported standards	- ANSI/ASHRAE Standard 135-2016 -ANSI/ASHRAE Standard 135-2004	-ANSI/ASHRAE Standard 135-2012 -IEIEJ-G-0006:2006 Addendum-a	-ANSI/ASHRAE Standard 135-2010

[^25] Selection or use the FA Integrated Selection Tool.

Sensor Solution (AnyWireASLINK system)

List of models

AnyWireASLINK

Characteristics

- AnyWireASLINK is a flexible sensor network that realizes wiring saving and man-hour reduction using small remote I/O modules, and status monitoring and preventive maintenance using sensors directly connected to the network.

() Visualization of sensors allows for preventive maintenance

- Can be connected to the AnyWireASLINK system from Anywire Corporation.
- Visualization of sensors has been improved through collaboration between sensors and Mitsubishi Electric FA products, which assists in preventive maintenance efforts such as sensor disconnection detection.
- No minimum distance and wiring method between terminals are specified, allowing flexible branching and connection.

(3) Preventive maintenance prevents problems before they occur

- Seamless communication like a single network using a common protocol, SLMP. Information can be easily collected and equipment monitored and maintained from anywhere in the office or worksites.

Can be used for equipment in remote locations

- ID (address) can be changed for a single remote module from the buffer memory without using an address writer. Remote IDs can be changed remotely.

[^26]
PROFIBUS-DP

List of models

Characteristics
 \square

- PROFIBUS-DP is an industrial field bus developed and maintained by PROFIBUS \& PROFINET International (PI). PROFIBUS is used in a wide range of fields mainly in Europe.

Can be connected to PROFIBUS-DP networks

- The MELSEC iQ-F series can be connected as a master station for PROFIBUS-DP networks.

() Obtain communication failure information from slave stations

- Using the buffer memory makes it possible to obtain communications error information or extended communications error information generated by a slave station during I/O data transmission.

Data communication can be done per group

- The global control function allows for synchronous communication of input/output data for each designated group through multicast communication (simultaneous broadcast communication).

(3) Reading/writing I/O data

- I/O data can be read/written between a CPU module device and the FX5-DP-M buffer memory.
- Configure the refresh settings on the PROFIBUS Configuration Tool, or use MOV instruction or FROM/TO instruction programs.
*1: For the corresponding station types and CPU modules, refer to P60 [Station type list].
*2: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.

[^27]
MODBUS

| List of models [MODBUS/RTU]

List of models [MODBUS/TCP]

Differences between MODBUS/RTU and MODBUS/TCP

Type	Protocol	Port	Use
MODBUS/RTU	Binary	RS-485 RS-232C	Master/slave
MODBUS/TCP	Binary	Built-in Ethernet port	Master/slave

MODBUS/TCP communication

- The FX5 CPU module used as a slave station can be connected to various MODBUS/TCP master devices connected through Ethernet.
- When the FX5 CPU module is used as the master station, it uses the simple CPU communication function or the communication protocol support function to control the slave stations

Serial communication

List of models

Mutually linking data

- This function connects two CPU modules and automatically links mutual device data.
- The ON/OFF status of bits and data register values of other stations can be checked.

Data can be auto-updated

- In this communication, a connection is set up with the FX5 PLC or FX3 PLC through RS-485 communication to automatically exchange data.

Serial communication with code readers, printers, etc.

- This function communicates data with code readers, printers, PCs, measuring instruments, etc. without a protocol via the RS-232C/RS-485 interface.
- RS2 instruction can be used for non-protocol communication functions.
? Dedicated instructions for easy operation control

- Up to 16 inverters can be operated and controlled by RS-485 communication.
*1: A firmware upgrade may be required to use some functions and modules. For details, refer to appendix P77 [Function compatibility table].
*2: 50 m or less when the built-in RS-485 port and FX5-485-BD are included.

OPC UA

List of models

Characteristics

- OPC UA can be linked with the host system without a PC. It can replace gateway PCs, which are a security risk, to help create more robust systems.
() Expanding applications by supporting OPC UA interface
- Can be linked with the host system without a PC
- This allows for data conversion between multi-vendor products and across different operating systems.

The number of man-hours for development can be reduced via the special setting tool.

OPC UA Module Configuration Too Security parameter settings screen

- For a setting of FX5-OPC module parameters and address space parameters, GX Works3*A11 is used.
- For a setting of IP addresses and security parameters, control for server certificates, OPC UA Module Configuration Tool ${ }^{* 12}$ is used.

Increased reliability through enhanced security

[^28]
Station type list

Applicable station types vary depending on used modules and devices.

Type	Used module/device (Model name)			\checkmark Applicable CPU module			
		Station type					
		Master	Device	FX5S	FX5UJ	FX5U	FX5UC
	FX5-CCLGN-MS	\checkmark	\checkmark	-	$\checkmark * 1$	\checkmark	$\checkmark * 2$
CC-Link IE TSN	FX5-40SSC-G	\checkmark	-	-	-	\checkmark	$\checkmark * 2$
	FX5-80SSC-G	\checkmark	-	-	-	\checkmark	$\checkmark * 2$
CC-Link IE Field Network	FX5-CCLIEF	-	\checkmark	-	\checkmark	\checkmark	$\checkmark * 2$
CC-Link IE Field Network Basic	$\begin{aligned} & \text { FX5S/FX5UJ/FX5U/FX5UC } \\ & \text { CPU module } \\ & \text { (CPU built-in Ethernet port) } \\ & \hline \end{aligned}$	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
	FX5-ENET	\checkmark	-	-	\checkmark	\checkmark	$\checkmark * 2$
	FX5-CCL-MS	\checkmark	\checkmark	-	\checkmark	\checkmark	$\checkmark * 2$
CC-Link V2	FX3U-16CCL-M	\checkmark	-	-	-	$\checkmark * 2$	$\checkmark * 2$
	FX3U-64CCL	-	\checkmark	-	-	$\checkmark * 2$	$\checkmark * 2$
	FX5-DP-M	\checkmark	-	-		\checkmark	$\checkmark * 2$
ROFIBUS-DP	FX3U-32DP	-	\checkmark	-	-	$\checkmark * 2$	$\checkmark * 2$
	FX5U/FX5UC CPU module (CPU built-in RS-485 port)	\checkmark	\checkmark	-	-	\checkmark	\checkmark
	FX5-232ADP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MODBUS/RTU	FX5-485ADP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	FX5-232-BD	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
	FX5-485-BD	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
MODBUS/TCP	$\begin{aligned} & \text { FX5S/FX5UJ/FX5U/FX5UC } \\ & \text { CPU module } \\ & \text { (CPU built-in Ethernet port) } \end{aligned}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Type		Used module/device (Model name)	Station type		Applicable CPU module				
		Server	Client	FX5S	FX5UJ	FX5U	FX5UC		
SLMP	3E frame		$\begin{aligned} & \text { FX5S/FX5UJ/FX5U/FX5UC } \\ & \text { CPU module } \\ & \text { (CPU built-in Ethernet port) } \end{aligned}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		FX5-ENET, FX5-ENET/IP	\checkmark	-	-	\checkmark	\checkmark	$\checkmark * 2$	
	1 E frame	FX5S/FX5UJ/FX5U/FX5UC CPU module (CPU built-in Ethernet port)	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	
		FX5-ENET, FX5-ENET/IP	\checkmark	-	-	\checkmark	\checkmark	$\checkmark * 2$	
EtherNet/IP	Class3 message communications	FX5-ENET/IP	\checkmark	-	-	\checkmark	\checkmark	$\checkmark * 2$	
	UCMM message communications		\checkmark	\checkmark	-	\checkmark	\checkmark	$\checkmark * 2$	
OPC UA		FX5-OPC	\checkmark	\checkmark	-	-	\checkmark	$\checkmark * 2$	

Type		Used module/device (Model name)	Station type		Applicable CPU module				
		Scanner	Adapter	FX5S	FX5UJ	FX5U	FX5UC		
EtherNet/IP	Class1 instance communications (Cyclic communication)		FX5-ENET/IP	\checkmark	\checkmark	-	\checkmark	\checkmark	$\checkmark * 2$

memo

Device safety is highly important amid the globalization of various industries and systems.
The MELSEC IQ-F series also features a lineup of modules that complies with safety standards.

List of models

Challenges and benefits of implementing safety systems

Advantage

- When a hazard is detected, the power of hazardous moving equipment, such as robots and conveyors, can be shut off.
- When the safety extension module itself malfunctions, the output can be forcibly turned OFF.

Safe manufacturing leads to higher productivity!

Easily create a system just by connecting a safety extension module

- This single system can be used to perform general-purpose control and safety control.
- A safety control system can easily be installed just by connecting to an FX5UJ/FX5U/FX5UC CPU module.
- No safety program or monitor wiring is required. Reduce the labor required for system construction.

[^29]Easy programming by just selecting built-in programs!

- Nine different programs are built in.

Safety input expansion module
FX5-SF-8DI4

- A safety system can be constructed by simply turning a rotary switch with a precision screwdriver, etc. to select it.
- This eliminates the need for sequence programs designed for safety control.

Use the Safety Extension Module Configuration Guide to determine the wiring at a glance!

- Easily check the system configuration, settings, and wiring of the safety extension module.

(2) Safety module status can be checked from the PLC!

- Safety extension module information, such as error codes, are stored in the buffer memory of the safety main module.
- Information, such as the error details and countermeasures, can be checked from the module diagnosis function of GX Works3, which helps when troubleshooting issues.

Programming Environment

GX Works3 is software that comprehensively supports the design and maintenance of sequence programs. Reduce engineering costs with a graphical, intuitive and easy programming by just "selecting".

GXWarksヨ

One Software, Many Possibilities Many possibilities in one software package

■ Reduces programming man-hours by graphical intuitive operability

Complies with international standard IEC 61131-3

Supports mainstream programming languages

- GX Works3 supports mainstream IEC-compliant programming languages.
- It is possible to use different programming languages simultaneously within a single project.
- Labels and devices used in programs can be shared by programs in different languages.

Ladder language

A graphic language that is displayed as a circuit consisting of contacts and coils.

SFC language
This graphical language clarifies the execution order and execution conditions of programs.

ST language
As in high-level
languages such as C, control is determined by syntax, such as selective branching by conditional statements.

FBD/LD language

This graphical language is used to create control programs with the simple operations of placing and connecting parts.
() Easy system design by simply selecting components

- With GX Works3, the module configuration diagram can be created by dragging and dropping selected parts.
(2) Auto-generation of module parameters

- When preparing the module configuration diagram, simply double-click the module to automatically generate the module parameters.

Module parameters can be set easily

- Module parameters can be set without a manual by simply following the wizard.
- You can also easily check the high-speed counter CH used and the location of wiring.
() Reduces programming man-hours with simple, convenient parameter settings

- Device settings can be input as a table.
- Easily set just by inputting values into the parameters.
- The program's execution trigger can also be set with the parameters.
() Reduces repetitive programming tasks with labels

- Labels can be used instead of conventional device memory addresses, I/O addresses, and buffer memory addresses.
- Defining labels, such as the name of signals used in devices, improves the readability of programs.
- Module labels corresponding to input/output signals, etc., of various intelligent function modules are pre-defined. Programming can be done without being conscious of the buffer memory addresses.

(3) The use of a structure can further reduce programming man-hours

- A structure can integrate the variables of a specific basic data type as members into one. Each member (label) can be defined even when the data types are different.
- A structure can be used to access a device with the label name regardless of the device address.

(2) Providing the convenience of special

 devices

- Up to 12000 points of convenient system devices compatible with upper level devices have been added.

Customizes the latch range setting for each device

- In the FX5S/FX5U/FX5UC CPU module, the latch range can be set for each device and the clear object can be selected when the CPU memory is operated.
() CPU module and network status can be checked

- Module configuration, detailed information about each module, and error conditions can be viewed.
- If an error occurs, error information along with the possible causes and remedies are displayed for troubleshooting.

Device status can be reproduced from logging data

- If logging files are available, GX LogViewer's historical trend graph and ladder diagram can be linked to reproduce and confirm device status.
- Data is displayed as a waveform graph, and changes can be seen at a glance. Equipment abnormalities can be visualized.
? Visualizes device/label associations in the program

- Devices/labels affected by program changes can be checked visually.
- Devices/labels can be monitored. The flow diagram makes it easier to understand and debugging can be performed efficiently.

[^30](3) Check the parameter setting procedure in flow

- Parameters can be set efficiently as they follow the flow.
- It is also possible to jump to a setting item from each item on the flow.

CPU module simulation

- With GX Simulator3, programs can be debugged with a virtual PLC on the computer.
- It is also useful for checking program operation before installing actual devices.

Simple motion simulation*

[^31][^32](2) Integrated simple motion setup tool

- The simple motion setup tool is integrated in GX Works3.
- GX Works3 makes it easy to change simple motion module settings such as module parameters, positioning data, and servo parameters. It also simplifies the servo adjustment.

\|GX LogViewer*A13

Allows visualization of collected data and helps

 improve debugging efficiency- This tool displays and analyzes large volumes of data collected by the CPU module with easy-to-understand operations.
- It enables the setting of the connection destination using the same operation as the setting and engineering tools, making it easy to check data.
- GX LogViewer is included in GX Works3 and provided free of charge*1.

Visualizes logging data

- Logging data collected from CPU modules can be displayed visually for efficient data analysis.
(2) Changes in device values can be checked in real time

[^33]
Camera recording package

Creates recording systems by linking cameras

- Video of operating conditions when errors occur can be saved for use during error analysis.
- By using FB, you can easily command the camera to record.
- FB is provided free of charge*

Analysis with video of device error points

- Video files can be played back in GX VideoViewer.
- Marked points of interest in the video can be shared with GX LogViewer and GX Works3 to track down the causes of problems
- GX VideoViewer is provided free of charge*.

(2) FB makes programs easy to read

- FB stands for "function block", and indicates a sequence program made into a circuit block part used repeatedly.
- This leads to more efficient program development and fewer program errors.

These are great advantages of FB!

(2) Programs can be easily diverted

- In program (processing) management, programs can be easily diverted by dragging \& dropping FBs.

Increased program readability

- In FB, only the necessary input/output are displayed, so the appearance is simple and programs are easier to read.

Module FBs to control each module are available
memo

Programming Software

MELSOFT iQ Works

MELSOFT iQ Works is based on the system management software MELSOFT Navigator and includes each engineering software (GX Works2/GX Works3, MT Works2, GT Works3, RT ToolBox3 mini, FR Configurator2).

MELSOFT iQ Works FA Integrated Engineering Software*1
iQ Works (English version)

- Model: SW2DND-IQWK-E (DVD)

MELSOFT GX Works3 PLC Engineering Software*1
GX Works3 (English version)
Model: SW1DND-GXW3-E (DVD)

() Corresponding models

GX Works3 software
GX Works2 software*2

GXWarksZ

GXWarks 3

FX5S, FX5UJ, FX5U, FX5UC
FX3U, FX3UC, FX3G, FX3GC, FX3S

e-F@ctory Starter Package

For details of e-F@ctory Starter Package, refer to the leaflet on the right.
E001ENG

(2) Easily analyze equipment information

- Offered free-of-charge as sample projects that can be introduced easily*
- Offers many functions for data collection, visualization, simple analysis, etc. on the production site level.
- Can be introduced easily only by device assignment and parameter setting.
(2) Easy introduction of IoT by "Visualization Diagnosis"
$>$ Equipment total efficiency monitor

- The defective product occurrence ratio and equipment stop ratio can be visualized.
- It is possible to shift from the equipment total efficiency monitor screen to each function screen. The detailed situation can be checked on each function screen.

(2) Predictive maintenance by MELSEC iQ-F

Screen for calculating MD
from signal data

- For example, by monitoring the temperature and vibration of the device using the MT method, an "unusual state" can be detected and unexpected failures can be prevented beforehand.
- The defect occurrence trend is detected, and prevention of defect occurrence is supported.
(2) Simple analysis by "Data collection Visualization"

- It is possible to visualize the alarm occurrence status, and whether or not the operation time exceeds the threshold value.
- The maintenance timing can be grasped before the production efficiency decreases, and preventive maintenance is enabled.
(1) Capable of detecting abnormal waveform fluctuations that are difficult to determine

- Waveform shapes of analog waveform data such as current and temperature can be monitored.
- Abnormal waveform fluctuation can be detected, which is difficult with basic threshold monitor using upper and lower limit value monitor.

PackML

Supports for PackML compliance with international standards

- Sample screens and sample projects that are compliant with international standards are provided free of charge*.
- Sample screens and projects can be used to reduce the man-hours and time needed for program development.
- Even if manufacturers of equipment differ, monitor and control screens and operability can be standardized across entire lines, facilitating improved operation and maintenance.
- Standardized connections between devices and with host systems reduce start-up time.

(2) Example of a free GOT sample screen

Function compatibility table

Function			Supported CPU module firmware version			Supported engineering tool software version		
			FX5S	FX5UJ	FX5U/FX5UC	FX5S	FX5UJ	FX5U/FX5UC
SLMP Communication	3E frame		From the first	From the first	From the first	GX Works3: 1.080J or later	GX Works3: 1.060N or later	From the first
	1 Eframe		From the first	1.030 or later	1.210 or later	GX Works3: 1.080J or later	GX Works3: 1.085P or later	-
CC-Link IE Field Network Basic			From the first	From the first	1.040 or later	GX Works3: 1.080J or later	GX Works3: 1.060 N or later	$\begin{array}{\|l\|} \hline \text { GX Works3: } \\ \text { 1.030G or later } \end{array}$
Data logging function			From the first*2	From the first	1.040 or later Serial number 16Y**** or later	GX Works3: 1.080 J or later (CPU module logging setting tool: 1.124E or later) (GX LogViewer: Ver. 1.124E or later)	GX Works3: 1.060 N or later (CPU module logging setting tool: 1.100E or later) (GX LogViewer: Ver. 1.100E or later)	GX Works3: 1.030G or later (CPU module logging setting tool: 1.64 S or later) (GX LogViewer: Ver. 1.64S or later)
	Compatibility with CSV file format		From the first*2	1.030 or later	1.210 or later Serial number 17X**** or later*1	GX Works3: 1.080 J or later (CPU module logging setting tool: 1.130L or later) (GX LogViewer: Ver. 1.130L or later)	GX Works3: 1.085P or later (CPU module logging setting tool: 1.130L or later) (GX LogViewer: Ver. 1.130L or later)	GX Works3: 1.065T or later (CPU module logging setting tool: 1.106K or later) (GX LogViewer: Ver. 1.106K or later)
IP filter function			From the first	From the first	1.050 or later	GX Works3: 1.080 J or later	GX Works3: 1.060 N or later	GX Works3: 1.035 M or later
Parallel link function			From the first		1.050 or later	GX Works3: 1.080 J or later		GX Works3: 1.035 M or later
File transfer function	FTP server		From the first*2		1.040 or later Serial number 16Y**** or later	GX Works3: 1.080 J or later		GX Works3: 1.030G or later
	FTP Client	Sending file	From the first*2	1.030 or later	1.210 or later Serial number $17 \times * * * *$ or later*1	GX Works3: 1.080J or later	GX Works3: 1.085P or later	GX Works3: 1.065T or later
		Getting file			1.240 or later Serial number 17X**** or later*1	GX Works3: 1.080J or later		GX Works3: 1.075D or later
Backup/restore function		Device/ label data		From the first	1.045 or later Serial number 16Y**** or later	GX Works3: 1.080J or later	GX Works3: 1.060 N or later	-
		Data memory			1.050 or later Serial number $16 Y * * * *$ or later	GX Works3: 1.080 J or later		GX Works3: 1.035 M or later
Memory dump function			From the first*2	From the first	1.050 or later Serial number $16 Y * * * *$ or later	GX Works3: 1.080 J or later	GX Works3: 1.060 N or later	GX Works3: 1.035 M or later
Real-time monitor function			From the first		1.060 or later	GX Works3: 1.080 J or later (GX LogViewer: Ver. 1.124E or later)	GX Works3: 1.060 N or later (GX LogViewer: Ver. 1.100E or later)	GX Works3: 1.040S or later (GX LogViewer: Ver. 1.76 E or later)
Web Server function	System Web page		From the first		1.060 or later	GX Works3: 1.080 J or later	$\begin{aligned} & \text { GX Works3: } \\ & \text { 1.060N or later } \end{aligned}$	GX Works3: 1.040S or later
	User Web page		From the first*2	1.020 or later	1.100 or later Serial number 17X**** or later*1	GX Works3: 1.080J or later	GX Works3: 1.080J or later	GX Works3: $1.047 Z$ or later
Simple CPU communication function			From the first	From the first	1.110 or later Serial number 17X**** or later*1	GX Works3: 1.080J or later	GX Works3: 1.060 N or later	GX Works3: 1.050 C or later
	Communication counterpart device addition		From the first	1.030 or later	1.210 or later	GX Works3: 1.080 J or later	GX Works3: 1.085P or later	GX Works3: 1.065T or later
MODBUS/TCP communication function			From the first	From the first	1.060 or later	GX Works3: 1.080 J or later	GX Works3: 1.060 N or later	GX Works3: 1.040 S or later
Time setting function (SNTP client)					1.060 or later	GX Works3: 1.080J or later	GX Works3: 1.060 N or later	GX Works3: 1.040 S or later
Firmware update function using engineering tools			From the first	-	-	GX Works3: 1.080 J or later	-	-

List of annotations

		Item		Content
\square Content about versions				
*A	1	Unicode character string		FX5UJ: Supported in firmware Ver. 1.030 or later. In addition, GX Works3 Ver. 1.085P or later is required. FX5U/FX5UC: Supported in firmware Ver. 1.240 or later. In addition, GX Works3 Ver. 1.075D or later is required.
	2	Sequential function chart (SFC)		FX5U/FX5UC: Supported in firmware Ver. 1.220 or later. In addition, GX Works3 Ver. 1.070Y or later is required.
	3	Program capacity (128 k steps)		FX5U/FX5UC: Supported in firmware Ver. 1.100 or later. In addition, GX Works3 Ver. 1.047 Z or later is required.
	4	No. of input/output points (384 points)		
	5	No. of remote I/O points (512 points)		
	6	Device/label memory (standard area) Capacity expansion		FX5U/FX5UC: Supported in firmware Ver. 1.210 or later. In addition, GX Works3 Ver. 1.065T or later is required.
	7	Improved operability of user Web drawing tool		Supported in user Web drawing tool Ver. 1.01B or later.
	8	Expanded the number of remote I/O stations for CC-Link IE Field Network Basic from 6 to 16		FX5U/FX5UC: Supported in firmware Ver. 1.110 or later and serial number 17 X**** (serial number 178**** for FX5UC-32MT/DS-TS and FX5UC-32MT/DSS-TS) or later. In addition, GX Works3 Ver. 1.050C or later is required. FX5U/FX5UC: Up to 6 stations with firmware versions before 1.110.
	9	EtherNet/IP Configuration Tool for FX5-ENET/IP Japanese version supported		EtherNet/IP Configuration Tool for FX5-ENET/IP: Supported in Ver. 1.01B or later.
	10	EtherNet/IP Configuration Tool for FX5-ENET/IP can be started from GX Works3 screen		EtherNet/IP Configuration Tool for FX5-ENET/IP: Supported in Ver. 1.00A or later. In addition, GX Works3 Ver. 1.085P or later is required.
	11	Parameter settings of the FX5-OPC		FX5U/FX5UC: Supported in firmware Ver. 1.245 or later. In addition, GX Works3 Ver. 1.077F or later is required.
	12	OPC UA Module Configuration Tool		FX5U/FX5UC: Supported in OPC UA Module Configuration Tool Ver. 1.00A or later. In addition, GX Works3 Ver. 1.077F or later is required.
	13	GX LogViewer		FX5S: Supported in GX LogViewer Ver. 1.124E or later.
	14	Guidance flow function		GX Works3: Ver. 1.085P or later is required.
\square Content about specifications				
*B	1	CPU module Built-in positioning function	Frequency	FX5S: 100 kpps FX5UJ: 200 kpps FX5U/FX5UC: 200 kpps
	2		Number of connected axes	FX5S: max. 4 axes FX5UJ: max. 3 axes FX5U/FX5UC: max. 4 axes
	3	High-speed Counter Function		FX5S/FX5UJ: 4 ch $100 \mathrm{kHz}+4 \mathrm{ch} 10 \mathrm{kHz}$ For FX5U-32M and FX5UC-32M only: 6 ch $200 \mathrm{kHz}+2$ ch 10 kHz
	4	Synchronous control		FX5-40SSC-S: Up to 64 types of cam patterns can be registered
\square Content about network configuration				
*C	1	CPU module CC-Link IE Field Network Basic master station function		FX5U/FX5UC CPU module: Up to 16 occupied stations in total. FX5S/FX5UJ CPU module: Up to 8 occupied stations in total.
	2	Simple CPU communication function		FX5-ENET, FX5-ENET/IP: Up to 32 connections FX5S/FX5UJ CPU module: Up to 8 connections FX5U/FX5UC CPU module: Up to 16 connections
\square Content about options				
*D	1	FX5-30EC		Attach when connecting an extension cable type module to a distant location or when making two-tier connections. The connector conversion adapter (FX5-CNV-BC) is required when connected with an input/output module (extension cable type), high-speed pulse input/output module, or an intelligent function module. When using also the bus conversion module in the same system, connect the FX5 extension power supply module or the powered I/O module right after the extended extension cable.
	2	FX5-65EC		
\square Other				
*E	1	FX2NC-100MPCB		May not be included with some intelligent function modules. For details, refer to the manual.

memo

FUTURE MANUFACTURING

The Future of Manufacturing as envisioned by Mitsubishi Electric, e-F@ctory: "Manufacturing" that evolves in response to environmental changes in an IoT enabled world.

Established In 2003, e-F@ctory created a Kaizen*1 automation methodology to help optimize and manage the increasingly complex business of "manufacturing".
Continuously evolving itself, it also utilizes the expanded reach of IT, which has brought "cyber world" benefits of analysis, simulation and virtual engineering, and yet has also placed greater demands on the "physical" world for increased data sensing, collection and communication. The continued success of e-F@ctory comes from understanding that each manufacturer has individual needs and investment plans but must still deliver; "Reduced management costs" (TCO); production flexibility to make a multitude of product in varying quantities; continuously enhanced quality. In short e-F@ctory's goal is to deliver operational performance that is "a step ahead of the times", while enabling manufacturing to evolve in
response to its environment. To do this it is supported by three key elements:

- The e-F@ctory Alliance Partners; who bring a wide range of software, devices, and system integration skills that enable the creation of the optimal e-F@ctory architecture.
- Advanced communication; utilizing open network technology like CC-Link IE, and communication middleware such as OPC, to open the door to device data, including legacy systems, while supporting high speed extraction.
- Platform thinking; to reduce the number of complex interfaces making it easier to bring together Robotics, Motion, Open programming languages (C language), PACs etc. strengthening the field of control,
yet operating on industrial strength hardware.

e.F@ctory

[^34]
Table of Contents

Lineup Details/Model Selection 82
Safety Control 105
I/O Module 109
Analog Control 119
High-Speed Counter 133
Pulse Output/Positioning 139
Network/Communication/Information-sharing 151
Programming/Development Environment 185
Option/Related Products 189
Related information 197
Overseas Service System/Compatible Products 199
Specifications 203
Products List 269

Selecting the FX5S model

Product configuration

Type	Details	Connection details, model selection
$\mathbf{1}$ CPU module	PLC with built-in CPU, power supply, input/output and program memory.	Various extension devices can be connected.
2 FX5 expansion board	Board connected to front of CPU module to expand functions.	Up to 1 SD memory card module and 1 communication board (up to 2 modules in total) can be connected to the front of the CPU module. (Expansion adapter can also be used.)
3 FX5 expansion adapter	Adapter connected to left side of CPU module to expand functions.	Up to 2 communication adapters and up to 4 analog adapters* (up to 6 adapters in total) can be connected to the left side of CPU module. When $\mathbf{2}$ is used, the number of units is restricted.

*: For FX5-4A-ADP with a serial number $223^{\star \star \star *}$ or older, up to two modules can be connected in the entire system.
1 CPU module (AC power supply/DC input type)

Model	Function	Input/output points occupied	Power supply capacity	I/O type	No. of input points	No. of output points
			24 V DC service power supply			
FX5S-30MR/ES	CPU module (With built-in 24 V DC service power supply)	30 points	$400 \mathrm{mA*}$	DC input (sink/source)/relay output	16 points	14 points
FX5S-30MT/ES				DC input (sink/source)/transistor (sink)		
FX5S-30MT/ESS				DC input (sink/source)/transistor (source)		
FX5S-40MR/ES		40 points		DC input (sink/source)/relay output	24 points	16 points
FX5S-40MT/ES				DC input (sink/source)/transistor (sink)		
FX5S-40MT/ESS				DC input (sink/source)/transistor (source)		
FX5S-60MR/ES		60 points		DC input (sink/source)/relay output	36 points	24 points
FX5S-60MT/ES				DC input (sink/source)/transistor (sink)		
FX5S-60MT/ESS				DC input (sink/source)/transistor (source)		

*: Use as power supply for input devices. (Cannot be used as an external power supply for expansion adapters.)

2 FX5 expansion board

Model	Function	Number of occupied input/output points	Current consumption	
			5 V DC power supply*1	24 V DC power supply
FX5-232-BD	RS-232C communication	-	- (20 mA)	-
FX5-485-BD	RS-485 communication			
FX5-422-BD-GOT	RS-422 communication (for GOT connection)		- (20 mA* ${ }^{*}$)	
FX5-SDCD	SD memory card module		-	

*1: Current consumption calculation is not required for the FX5S CPU module. Values in parentheses are values stated in the specifications of each product.
*2: The current consumption will increase when the 5 V type GOT is connected.

3 FX5 expansion adapter

Model	Function	Number of occupied input/output points	Current consumption		
			5 V DC power supply*	$24 \mathrm{VDC}$ power supply*	External 24 V DC power supply
FX5-232ADP	RS-232C communication	-	- (30 mA)	(30 mA)	
FX5-485ADP	RS-485 communication		- (20 mA)	,	
FX5-4A-ADP	2 ch voltage input/current input, 2 ch voltage output/ current output		- (10 mA)	-	100 mA
FX5-4AD-ADP	4 ch voltage input/current input			- (20 mA)	-
FX5-4AD-PT-ADP	4 ch temperature sensor (resistance temperature detector) input				
FX5-4AD-TC-ADP	4 ch temperature sensor (thermocouple) input				
FX5-4DA-ADP	4 ch voltage output/current output			-	160 mA

*: Current consumption calculation is not required for the FX5S CPU module. Values in parentheses are values stated in the specifications of each product.

Rules for System Configuration A maximum of 60 input and output points can be controlled by the FX5S CPU module.

Limitation on number of modules when extending

The number of connectable modules is limited for the following products. For details, refer to the manual.

Type	Model/type	Setting method/precautions
FX5 expansion adapter	FX5-232ADP	Up to 2 modules can be connected for the entire system. When an expansion board (for RS-232C/RS-485/RS-422 communication) is connected to the CPU module, only 1 module can be connected.
	FX5-485ADP	
	FX5-4A-ADP*1	Up to 4 modules can be connected for the entire system. For FX5-4A-ADP with a serial number $223^{* * * *}$ or older, up to two modules can be connected in the entire system.
	FX5-4AD-ADP	
	FX5-4DA-ADP	
	FX5-4AD-PT-ADP	
	FX5-4AD-TC-ADP*2	

[^35]*2: When the FX5-4DA-ADP and FX5-4A-ADP are used, and if they are connected adjacent to FX5-4AD-TC-ADP, connect them to either one side. Do not use both sides.

Selecting the FX5UJ model

Product configuration

Type	Details	Connection details, model selection
1 cPU module	PLC with built-in CPU, power supply, input/output and program memory.	Various extension devices can be connected.
24 I/O module (extension cable type)	Product for extending I/O of extension cable type. Some products are powered.	The maximum number of input and output points for the entire system is 256 points. Up to 8 extension modules can be connected. (Extension power supply modules and connector conversion modules are not included in the number of connected modules.) Up to 4 high-speed pulse I/O modules can be connected. For details, refer to "Rules for System Configuration" on p. 88.
3 FX5 extension power supply module	Module for extending power supply if CPU module's internal power supply is insufficient. Extension cable is enclosed.	Power can be supplied to I/O module, intelligent function module. Up to 1 module can be connected.
5 FX5 intelligent function module	Module with functions other than input/output.	Up to 8 extension modules including the I/O module can be connected (Extension power supply modules and connector conversion modules are not included in the number of connected modules.)
6 Connector conversion module	Module for connecting FX5 Series (extension connector type) extension module.	An extension module (extension connector type) for FX5 can be connected.
7 I/O module (Extension connector type)	Product for adding extension connector type inputs/outputs.	The maximum number of input and output points for the entire system is 256 points. Up to 8 extension modules can be connected. (Extension power supply modules and connector conversion modules are not included in the number of connected modules.) Using this type of I/O module requires the connector conversion module.
8 FX5 expansion board	Board connected to front of CPU module to expand functions.	Up to 1 module can be connected to the front of the CPU module. (Expansion adapter can also be used.)
9 FX5 expansion adapter	Adapter connected to left side of CPU module to expand functions.	Up to 2 communication adapters and up to 2 analog adapters (up to 4 adapters in total) can be connected on the left side of the CPU module. When 8 is used, the number is limited.
10 FX5 safety extension module	Module for configuring a safety control system.	Up to 1 safety main module and up to 2 safety input extension modules can be connected. Extension modules cannot be connected on the subsequent stage (the right side) of the safety extension module.

1 CPU module (AC power supply, DC input type)

Model	Function	Number of occupied input/ output points	Power supply capacity	I/O type	No. of input points	No. of output points
			24 V DC service power supply			
FX5UJ-24MR/ES	CPU module (24 V DC service power built-in)	24 points (32 points)*1	$400 \mathrm{~mA}\left(460 \mathrm{~mA}{ }^{* 2}\right)$	DC input (sink/source)/relay output	14 points (16 points)	10 points (16 points)
FX5UJ-24MT/ES				DC input (sink/source)/transistor (sink)		
FX5UJ-24MT/ESS				DC input (sink/source)/transistor (source)		
FX5UJ-40MR/ES		40 points	$400 \mathrm{~mA}\left(500 \mathrm{~mA}{ }^{* 2}\right)$	DC input (sink/source)/relay output	24 points	16 points
FX5UJ-40MT/ES				DC input (sink/source)/transistor (sink)		
FX5UJ-40MT/ESS				DC input (sink/source)/transistor (source)		
FX5UJ-60MR/ES		60 points (64 points) ${ }^{* 1}$	$400 \mathrm{~mA}\left(550 \mathrm{~mA}{ }^{* 2}\right)$	DC input (sink/source)/relay output	36 points (40 points) *1	24 points
FX5UJ-60MT/ES				DC input (sink/source)/transistor (sink)		
FX5UJ-60MT/ESS				DC input (sink/source)/transistor (source)		

[^36]2 I/O module (AC power supply/DC input type) (extension cable type)

Model	Function	Number of occupied input output points	Power supply capacity		I/O type	No. of input points	No. of output points
			5 V DC power supply	24 V DC service power supply			
FX5-32ER/ES	I/O module (24 V DC service power built-in)	32 points	965 mA	$\begin{aligned} & 250 \mathrm{~mA} \\ & \left(310 \mathrm{~mA}^{*}\right) \end{aligned}$	DC input (sink/source)/relay output	16 points	16 points
FX5-32ET/ES					DC input (sink/source)/transistor (sink)		
FX5-32ET/ESS					DC input (sink/source)/transistor (source)		

*: Power supply capacity when an external power supply is used for input circuits.

3 FX5 extension power supply module

Model	Function	Number of occupied input/output points	Power supply capacity	
			$1200 \mathrm{~mA}^{*}$	24 V DC power supply
FX5-1PSU-5V	Extension power supply	-	$300 \mathrm{~mA}^{*}$	

*: Derating occurs when the ambient temperature exceeds $40^{\circ} \mathrm{C}$. For details, refer to the manual.
4 I/O module (extension cable type)

Model	I/O type	Number of occupied input/output points	Current consumption	
			5 V DC power supply	24 V DC power supply
FX5-8EXVES	DC input (sink/source)	8 points	75 mA	50 mA (0 mA**)
FX5-16EXVES	DC input (sink/source)	16 points	100 mA	$85 \mathrm{~mA}\left(0 \mathrm{~mA}^{* 1}\right)$
FX5-8EYR/ES	Relay output	8 points	75 mA	75 mA
FX5-8EYT/ES	Transistor output (sink)			
FX5-8EYT/ESS	Transistor output (source)			
FX5-16EYR/ES	Relay output	16 points	100 mA	125 mA
FX5-16EYT/ES	Transistor output (sink)			
FX5-16EYT/ESS	Transistor output (source)			
FX5-16ER/ES	DC input (sink/source)/relay output	16 points	100 mA	$125 \mathrm{~mA}\left(85 \mathrm{~mA}^{* 1}\right)$
FX5-16ET/ES	DC input (sink/source)/transistor output (sink)			
FX5-16ET/ESS	DC input (sink/source)/transistor output (source)			
FX5-16ET/ES-H*2	DC input (sink/source)/transistor output (sink)	16 points	100 mA	$125 \mathrm{~mA}\left(85 \mathrm{~mA}^{* 1}\right)$
FX5-16ET/ESS-H*2	DC input (sink/source)/transistor output (source)			

*1: Current consumption when an external power supply is used for input circuits
*2: Supported by FX5UJ CPU module Ver. 1.030 or later.

5 FX5 intelligent function module

Model	Function	Number of occupied input/output points	Current consumption		
			5 V DC power supply	24 V DC power supply	24 V DC external power supply
FX5-4AD	4-ch voltage/current input	8 points	100 mA	40 mA	-
FX5-4DA	4-ch voltage/current output	8 points	100 mA	-	150 mA
FX5-8AD	8-ch voltage/current/thermocouple/resistance temperature detector input	8 points	-	40 mA	100 mA
FX5-4LC	4-ch temperature control (thermocouple/resistance temperature detector/micro voltage)	8 points	140 mA	-	25 mA
FX5-20PG-P	Pulse output for 2-axis control (transistor output)	8 points	-	-	120 mA
FX5-20PG-D	Pulse output for 2-axis control (differential driver output)	8 points	-	-	165 mA
FX5-40SSC-S	Simple motion 4-axis control (SSCNET III/H compatible)	8 points	-	-	250 mA
FX5-80SSC-S	Simple motion 8-axis control (SSCNET III/H compatible)	8 points	-	-	250 mA
FX5-CCLGN-MS*1	CC-Link IE TSN master/local	8 points	-	-	220 mA
FX5-ENET	Ethernet communication	8 points	-	110 mA	-
FX5-ENET/IP	EtherNet/IP communication, Ethernet communication	8 points	-	110 mA	-
FX5-CCL-MS	CC-Link system master/intelligent device station	8 points*2	-	-	100 mA
FX5-CCLIEF	CC-Link IE Field Network intelligent device station	8 points	10 mA	-	230 mA
FX5-ASL-M	AnyWireASLINK system master	8 points	200 mA	-	$100 \mathrm{~mA} * 3$
FX5-DP-M	PROFIBUS-DP master	8 points	-	150 mA	-

*1: Supported by FX5UJ CPU module Ver. 1.040 or later.
*2: When using FX5-CCL-MS as a master station, the number of remote I / O points on the network increases.
*3: This value does not include the supply current to remote modules (Max. 2 A).
6 Connector conversion module

Model	Function	Number of occupied input/output points	Current consumption	
			5 V DC power supply	24 V DC power supply
FX5-CNV-IF	Connector conversion (FX5 (Extension cable type) \rightarrow FX5 (Extension connector type))	-	-	-

Lineup Details/Model Selection

7 I/O module (Extension connector type)

Model	I/O type	Number of occupied input/output points	Current consumption	
			5 V DC power supply	24 V DC power supply
FX5-C16EX/D	DC input (sink)	16 points	100 mA	$65 \mathrm{~mA}(0 \mathrm{~mA}$ *)
FX5-C16EX/DS	DC input (sink/source)			
FX5-C32EX/D	DC input (sink)	32 points	120 mA	$130 \mathrm{~mA}\left(0 \mathrm{~mA}^{*}\right)$
FX5-C32EX/DS	DC input (sink/source)			
FX5-C32EX/DS-TS				
FX5-C16EYT/D	Transistor output (sink)	16 points	100 mA	100 mA
FX5-C16EYT/DSS	Transistor output (source)			
FX5-C16EYR/D-TS	Relay output			
FX5-C32EYT/D	Transistor output (sink)	32 points	120 mA	200 mA
FX5-C32EYT/DSS	Transistor output (source)			
FX5-C32EYT/D-TS	Transistor output (sink)			
FX5-C32EYT/DSS-TS	Transistor output (source)			
FX5-C32ET/D	DC input (sink)/transistor output (sink)	32 points	120 mA	$165 \mathrm{~mA}(100 \mathrm{~mA}$ *)
FX5-C32ET/DSS	DC input (sink/source)/transistor output (source)			
FX5-C32ET/DS-TS	DC input (sink/source)/transistor output (sink)			
FX5-C32ET/DSS-TS	DC input (sink/source)/transistor output (source)			

*: Current consumption when an external power supply is used for the input circuits.

8 FX5 expansion board

Model	Function	Number of occupied input/output points	Current consumption	
			5 V DC power supply*1	24 V DC power supply
FX5-232-BD	RS-232C communication	-	- (20 mA)	-
FX5-485-BD	RS-485 communication			
FX5-422-BD-GOT	RS-422 communication (for GOT connection)		- (20 mA*2)	

* 1: Current consumption calculation is not required for the FX5UJ CPU module. Shown in parentheses are values stated in the specifications of each product.
*2: The current consumption will increase when the 5 V type GOT is connected

9 FX5 expansion adapter

Model	Function	Number of occupied input/output points	Current consumption		
			5 V DC power supply*1	24 V DC power supply*1	24 V DC external power supply
FX5-232ADP	RS-232C communication	-	- (30 mA)	- (30 mA)	-
FX5-485ADP	RS-485 communication		- (20 mA)		
FX5-4A-ADP*2	2 ch voltage input/current input, 2 ch voltage output/current output		- (10 mA)	-	100 mA
FX5-4AD-ADP	4 ch voltage input/current input			- (20 mA)	160 mA
FX5-4AD-PT-ADP	4 ch temperature sensor (resistance temperature detector) input				
FX5-4AD-TC-ADP	4 ch temperature sensor (thermocouple) input				
FX5-4DA-ADP	4 ch voltage output/current output			-	

*1: Current consumption calculation is not required for the FX5UJ CPU module. Shown in parentheses are values stated in the specifications of each product. *2: Supported by FX5UJ CPU modules Ver. 1.010 or later.

10 FX5 safety extension module

Model	Function	Number of occupied input/output points	Current consumption		
			5 V DC power supply	24 V DC power supply	24 V DC external power supply
FX5-SF-MU4T5*1*2	Safety main module 4-points safety input/4-points safety output	8 points	200 mA	5 mA	125 mA
FX5-SF-8D14*2	Safety input expansion module 8-points safety input	0 points	-	-	$125 \mathrm{~mA}^{* 3}$

[^37]
Limitation on the number of modules connected to the CPU module

There is a limitation on the number of extension modules connected to the CPU module, as shown on the right.

[Restriction 1]

- Up to 2 modules can be connected.
- The total number of the input/output points occupied by the extension modules must be 32 or less.
-When 32 input/output points are occupied by the first module, the [Restriction 2] shall apply to the connection of the second and following modules.

[Restriction 2]

- Up to 2 modules can be connected.
- If one extension module is connected, 200 mA of 24 V DC service power supply will be consumed unconditionally.
- If the 24 V DC service power supply is insufficient, such as external power for the extension module is supplied from the 24 V DC service power supply of the CPU module, the extension module cannot be connected.

Calculation of current consumed by extension modules

The power required for the expansion adapter, expansion board and extension module is supplied from the CPU module or extension power supply module. Use the following calculations to confirm whether the required power can be supplied. (All calculations must be satisfied.)

*1: When connecting an input module to the back stage (right side) of the extension power supply module, power will be supplied from the CPU module or a powered I/O module. 5 V DC power is supplied from an extension power supply module.
*2: The 24 V DC service power calculation results value (when positive) indicates the 24 VDC service power supply's remaining capacity, and can be used as an external load power.

If the calculation results are negative, the power capacity is exceeded so review the system configuration.

Lineup Details/Model Selection

Rules for System Configuration The total number of $/ / O$ points and remote I / O points for the CPU module and extension devices controllable in FX5UJ CPU module is 256 points or less.

- Number of input/output points

The maximum number of I/O points that can be configured with FX5UJ is as follows.

About remote I/O points

The maximum number of I/O points when using a network master module is as follows.

(D) Number of CC-Link remote I/O points

(E) Number of AnyWireASLINK remote I/O points

[^38]
Limitation on power supply type when connecting

The power supply type is limited for extension modules connectable to the following CPU modules. For details, refer to the manual.

Type/model/power supply type		Connectable extension module	
	Type	Model/power supply type	
FX5UJ CPU module	Powered I/O module	FX5-32ED/ED (AC power supply type)	
	Extension power supply module	FX5-1PSU-5V (AC power supply type)	

Limitation on number of modules when extending

The number of connectable modules is limited for the following products. For details, refer to the manual.

Type	Model/type	Setting method/precautions
I/O module (Extension cable type)	FX5-16ET/ES-H	Up to 4 modules can be connected for the entire system.
	FX5-16ET/ESS-H	
FX5 intelligent function module	FX5-CCLGN-MS	Only 1 module can be connected in the entire system for each station type. - Master station: 1 module - Local station: 1 module
	FX5-CCL-MS	Only 1 module can be connected in the entire system for each station type. - Master station: 1 module - Intelligent device station: 1 module
	FX5-ENET	Only 1 module can be connected in the entire system.
	FX5-ENET/IP	
	FX5-CCLIEF	
	FX5-DP-M	
	FX5-ASL-M	
	FX5-40SSC-S	Only 1 module may be connected per system. Use together with the FX5-80SSC-S is not possible.
	FX5-80SSC-S	Only 1 module may be connected per system. Use together with the FX5-40SSC-S is not possible.
FX5 expansion adapter	FX5-232ADP	Up to 2 modules can be connected for the entire system. When an extension board is connected to the CPU module, only 1 module can be connected.
	FX5-485ADP	
	FX5-4A-ADP	Up to 2 modules can be connected for the entire system.
	FX5-4AD-ADP	
	FX5-4DA-ADP	
	FX5-4AD-PT-ADP	
	FX5-4AD-TC-ADP	
FX5 safety extension module	FX5-SF-MU4T5	Only 1 module of the FX5-SF-MU4T5 and up to 2 modules of the FX5-SF-8DI4 can be connected in the entire system.
	FX5-SF-8D14	

Selecting the FX5U model

Product configuration

Type	Details	Connection details, model selection
1 CPU module	PLC with built-in CPU, power supply, input/output and program memory.	Various extension devices can be connected.
24 I/O module (extension cable type)	Product for extending I/O of extension cable type. Some products are powered.	The maximum number of input and output points for the entire system is 256 points/384 points*1. Up to 16 extension modules can be connected. (Extension power supply modules and connector conversion modules are not included in the number of connected modules.) Up to 4 high-speed pulse I/O modules can be connected. For details, refer to "Rules for System Configuration" on p. 95.
3 FX5 extension power supply module	Module for extending power supply if CPU module's internal power supply is insufficient. Extension cable is enclosed.	Power can be supplied to I/O module, intelligent function module, and bus conversion module. Up to 2 modules can be connected.
5 FX5 intelligent function module	Module with functions other than input/output.	Up to 16 extension modules including the I/O module can be connected (Extension power supply modules and connector conversion modules are not included in the number of connected modules.)
6 Connector conversion module	Module for connecting FX5 Series (extension connector type) extension module.	An extension module (extension connector type) for FX5 can be connected.
7 I/O module (Extension connector type)	Product for adding extension connector type inputs/outputs.	The maximum number of input and output points for the entire system is 256 points/384 points*1. Up to 16 extension modules can be connected. (Extension power supply modules and connector conversion modules are not included in the number of connected modules.) Using this type of I/O module requires the connector conversion module.
8 Bus conversion module	Conversion module for connecting FX3 Series extension module.	FX3 extension module can be connected only to the right side of the bus conversion module. When using FX5-CNV-BUSC, a connector conversion module is required.
9 FX5 expansion board	Board connected to front of CPU module to expand functions.	Up to 1 module can be connected to the front of the CPU module. (Expansion adapter can also be used.)
10 FX5 expansion adapter	Adapter connected to left side of CPU module to expand functions.	Up to 2 communication adapters and up to 4 analog adapters*2 (up to 6 adapters in total) can be connected on the left side of the CPU module.
11 FX3 extension power supply module	Module for extending power supply if CPU module's internal power supply is insufficient. Extension cable is enclosed.	Up to 2 modules can be connected. The bus conversion module is required for use.
12 FX3 intelligent function module	Module with functions other than input/output.	When using the FX3 extension power supply module, up to 8 modules*3 can be used. When not using the FX3 extension power supply module, up to 6 modules*3 can be used. The bus conversion module is required for use.
13 FX5 safety extension module	Module for configuring a safety control system.	Up to 1 safety main module and up to 2 safety input extension modules can be connected. Extension modules cannot be connected on the downstream side (right side) of any safety extension module. Bus conversion modules and FX3 extension modules cannot be used simultaneously.

*1: Supported by FX5U CPU modules Ver. 1.100 or later and by GX Works3 Ver. $1.047 Z$ or later.
2: For FX5-4A-ADP with a serial number $223^{ * * *}$ or older, up to two modules can be connected in the entire system.
*3: Excluding some models

1 -1) CPU module (AC power supply, DC input type)

Model	Function	Number of occupied input/ output points	Power supply capacity		V/O type	No. of input points	No. of output points
			5 VDC power supply	$24 \mathrm{VDC}$ service power supply			
FX5U-32MR/ES	CPU module (24 V DC service power built-in)	32 points	900 mA	$400 \mathrm{~mA}\left(480 \mathrm{~mA}^{* 1}\right)$ $\left[300 \mathrm{~mA}\left(380 \mathrm{~mA}^{* 1}\right)\right)^{* 2}$	DC input (sink/source)/relay output	16 points	16 points
FX5U-32MT/ES					DC input (sink/source)/transistor (sink)		
FX5U-32MT/ESS					DC input (sink/source)/transistor (source)		
FX5U-64MR/ES		64 points	1100 mA	$600 \mathrm{~mA}\left(740 \mathrm{~mA}^{* 1}\right)$ $\left[300 \mathrm{~mA}\left(440 \mathrm{~mA}^{* 1}\right)^{* 2}\right.$	DC input (sink/source)/relay output	32 points	32 points
FX5U-64MT/ES					DC input (sink/source)/transistor (sink)		
FX5U-64MT/ESS					DC input (sink/source)/transistor (source)		
FX5U-80MR/ES		80 points	1100 mA	$600 \mathrm{~mA}\left(770 \mathrm{~mA}^{* 1}\right)$ $\left[300 \mathrm{~mA}\left(470 \mathrm{~mA}^{* 1}\right)^{* 2}\right.$	DC input (sink/source)/relay output	40 points	40 points
FX5U-80MT/ES					DC input (sink/source)/transistor (sink)		
FX5U-80MT/ESS					DC input (sink/source)/transistor (source)		

*1: Power supply capacity when an external power supply is used for input circuits.
*2: Value inside [] indicates the power supply capacity when the CPU module is used at the operating ambient temperature of less than $0^{\circ} \mathrm{C}$.

1 -2) CPU module (DC power supply/DC input type)

Model	Function	Number of occupied input/ output points	Power supply capacity		I/O type	No. of input points	No. of output points
			5 V DC power supply	24 V DC power supply			
FX5U-32MR/DS	CPU module	32 points	$\begin{aligned} & 900 \mathrm{~mA} \\ & {[775 \mathrm{~mA}]^{*}} \end{aligned}$	$\begin{aligned} & 480 \mathrm{~mA} \\ & {[360 \mathrm{~mA}]^{*}} \end{aligned}$	DC input (sink/source)/relay output	16 points	16 points
FX5U-32MT/DS					DC input (sink/source)/transistor output (sink)		
FX5U-32MT/DSS					DC input (sink/source)/transistor output (source)		
FX5U-64MR/DS		64 points	$\begin{aligned} & 1100 \mathrm{~mA} \\ & {[975 \mathrm{~mA}]} \end{aligned}$	$\begin{aligned} & 740 \mathrm{~mA} \\ & {[530 \mathrm{~mA}]^{*}} \end{aligned}$	DC input (sink/source)/relay output	32 points	32 points
FX5U-64MT/DS					DC input (sink/source)/transistor output (sink)		
FX5U-64MT/DSS					DC input (sink/source)/transistor output (source)		
FX5U-80MR/DS		80 points	$\begin{aligned} & 1100 \mathrm{~mA} \\ & {[975 \mathrm{~mA}]} \end{aligned}$	$\begin{aligned} & 770 \mathrm{~mA} \\ & {[560 \mathrm{~mA}]^{*}} \end{aligned}$	DC input (sink/source)/relay output	40 points	40 points
FX5U-80MT/DS					DC input (sink/source)/transistor output (sink)		
FX5U-80MT/DSS					DC input (sink/source)/transistor output (source)		

*: Value inside [] indicates the power supply capacity when the supply voltage is 16.8 to 19.2 V DC.
2-1) I/O module (AC power supply/DC input type) (extension cable type)

Model	Function	Number of occupied input/ output points	Power supply capacity		I/O type	No. of input points	No. of output points
			5 V DC power supply	24 V DC service power supply			
FX5-32ER/ES*1	I/O module (24 V DC service power built-in)	32 points	965 mA	$\begin{aligned} & 250 \mathrm{~mA} \\ & \left(310 \mathrm{~mA}^{* 2}\right) \end{aligned}$	DC input (sink/source)/relay output	16 points	16 points
FX5-32ET/ES*1					DC input (sink/source)/transistor (sink)		
FX5-32ET/ESS*1					DC input (sink/source)/transistor (source)		

*1: Can be connected only to the AC power type system
*2: Power supply capacity when an external power supply is used for input circuits.
$2-2$ I/O module (DC power supply/DC input type) (extension cable type)

Model	Function	Number of occupied input/ output points	Power supply capacity		VO type	No. of input points	No. of output points
			5 VDC power supply	24 V DC power supply			
FX5-32ER/DS*	I/O module	32 points	965 mA	310 mA	DC input (sink/source)/relay output	16 points	16 points
FX5-32ET/DS*					DC input (sink/source)/transistor output (sink)		
FX5-32ET/DSS*					DC input (sink/source)/transistor output (source)		

*: Can be connected only to the DC power type system

3 FX5 extension power supply module

Model	Function	Number of occupied input/output points	Power supply capacity	
			5 VDC power supply	$24 \mathrm{~V} \text { DC }$ power supply
FX5-1PSU-5V*1	Extension power supply	-	$1200 \mathrm{~mA}^{* 3}$	$300 \mathrm{~mA} * 3$
FX5-C1PS-5V*2	Extension power supply	-	$1200 \mathrm{~mA}^{* 3}$	$625 \mathrm{~mA}^{* 3}$

*1: Can be connected only to the AC power type system
*2: Can be connected only to the DC power type system
$* 3$: Derating occurs when the ambient temperature exceeds $40^{\circ} \mathrm{C}$. For details, refer to the manual.
4 I/O module (extension cable type)

Model	V/O type	Number of occupied input/output points	Current consumption	
			5 V DC power supply	24 V DC power supply
FX5-8EXJES	DC input (sink/source)	8 points	75 mA	50 mA (0 mA*2)
FX5-16EX/ES	DC input (sink/source)	16 points	100 mA	$85 \mathrm{~mA}\left(0 \mathrm{~mA}^{*}\right)$
FX5-8EYR/ES	Relay output	8 points	75 mA	75 mA
FX5-8EYT/ES	Transistor output (sink)			
FX5-8EYT/ESS	Transistor output (source)			
FX5-16EYR/ES	Relay output	16 points	100 mA	125 mA
FX5-16EYT/ES	Transistor output (sink)			
FX5-16EYT/ESS	Transistor output (source)			
FX5-16ER/ES	DC input (sink/source)/relay output	16 points	100 mA	$125 \mathrm{~mA}\left(85 \mathrm{~mA}^{* 2}\right)$
FX5-16ET/ES	DC input (sink/source)/transistor output (sink)			
FX5-16ET/ESS	DC input (sink/source)/transistor output (source)			
FX5-16ET/ES-H*1	DC input (sink/source)/transistor output (sink)	16 points	100 mA	$125 \mathrm{~mA}\left(85 \mathrm{~mA}^{* 2}\right)$
FX5-16ET/ESS-H*1	DC input (sink/source)/transistor output (source)			

[^39]
Lineup Details/Model Selection

5 FX5 intelligent function module

Model	Function	Number of occupied input/output points	Current consumption		
			5 V DC power supply	24 V DC power supply	24 V DC externa power supply
FX5-4AD*1	4-ch voltage/current input	8 points	100 mA	40 mA	-
FX5-4DA*1	4-ch voltage/current output	8 points	100 mA	-	150 mA
FX5-8AD*1	8-ch voltage/current/thermocouple/resistance temperature detector input	8 points	-	40 mA	100 mA
FX5-4LC**	4-ch temperature control (thermocouple/resistance temperature detector/micro voltage)	8 points	140 mA	-	25 mA
FX5-20PG-P*1	Pulse output for 2-axis control (transistor output)	8 points	-	-	120 mA
FX5-20PG-D*1	Pulse output for 2-axis control (differential driver output)	8 points	-	-	165 mA
FX5-40SSC-S	Simple motion 4-axis control (SSCNET II/H compatible)	8 points	-	-	250 mA
FX5-80SSC-S	Simple motion 8-axis control (SSCNET III/H compatible)	8 points	-	-	250 mA
FX5-40SSC-G*2	Motion 4-axis control (CC-Link IE TSN compatible)	8 points	-	-	240 mA
FX5-80SSC-G*2	Motion 8-axis control (CC-Link IE TSN compatible)	8 points	-	-	240 mA
FX5-CCLGN-MS*3	CC-Link IE TSN master/local	8 points	-	-	220 mA
FX5-ENET*4	Ethernet communication	8 points	-	110 mA	-
FX5-ENET//P*4	EtherNet/IP communication, Ethernet communication	8 points	-	110 mA	-
FX5-CCL-MS*1	CC-Link system master/intelligent device station	8 points*5	-	-	100 mA
FX5-CCLIEF*6	CC-Link IE Field Network intelligent device station	8 points	10 mA	-	230 mA
FX5-ASL-M*1	AnyWireASLINK system master	8 points	200 mA	-	$100 \mathrm{~mA}{ }^{* 7}$
FX5-DP-M**	PROFIBUS-DP master	8 points	-	150 mA	-
FX5-OPC*8	OPC UA communication	8 points	-	110 mA	-

*1: Supported by FX5U CPU module Ver. 1.050 or later.
*2: Supported by FX5U CPU module Ver. 1.230 or later.
*3: Supported by FX5U CPU module Ver. 1.210 or later.

* 4: Supported by FX5U CPU module Ver. 1.110 or later.
*5: When using FX5-CCL-MS as a master station, the number of remote I/O points on the network increases.
*6: Supported by FX5U CPU module Ver. 1.030 or later.
*7: This value does not include the supply current to remote modules (Max. 2 A).
* 8: Supported by FX5U CPU module Ver. 1.245 or later.

Connector conversion module

Model	Function	Number of occupied input/output points	Current consumption	
			$\begin{gathered} 5 \mathrm{VDC} \\ \text { power supply } \end{gathered}$	$\begin{gathered} 24 \mathrm{VDC} \\ \text { power supply } \end{gathered}$
FX5-CNV-IF	Connector conversion (FX5 (Extension cable type) \rightarrow FX5 (Extension connector type))	-	-	-

7 I/O module (Extension connector type)

Model	/O type	Number of occupied input/output points	Current consumption	
			$\begin{gathered} 5 \mathrm{VDC} \\ \text { power supply } \end{gathered}$	24 V DC power supply
FX5-C16EXD	DC input (sink)	16 points	100 mA	$65 \mathrm{~mA}(0 \mathrm{~mA}$ *
FX5-C16EX/DS	DC input (sink/source)			
FX5-C32EXD	DC input (sink)	32 points	120 mA	$130 \mathrm{~mA}\left(0 \mathrm{~mA}^{*}\right)$
FX5-C32EX/DS	DC input (sink/source)			
FX5-C32EX/DS-TS				
FX5-C16EYT/D	Transistor output (sink)	16 points	100 mA	100 mA
FX5-C16EYT/DSS	Transistor output (source)			
FX5-C16EYR/D-TS	Relay output			
FX5-C32EYT/D	Transistor output (sink)	32 points	120 mA	200 mA
FX5-C32EYT/DSS	Transistor output (source)			
FX5-C32EYT/D-TS	Transistor output (sink)			
FX5-C32EYT/DSS-TS	Transistor output (source)			
FX5-C32ET/D	DC input (sink)/transistor output (sink)	32 points	120 mA	$\begin{aligned} & 165 \mathrm{~mA} \\ & \left(100 \mathrm{~mA}^{*}\right) \end{aligned}$
FX5-C32ET/DSS	DC input (sink/source)/transistor output (source)			
FX5-C32ET/DS-TS	DC input (sink/source)/transistor output (sink)			
FX5-C32ET/DSS-TS	DC input (sink/source)/transistor output (source)			

*: Current consumption when an external power supply is used for the input circuits.

Bus conversion module

Model	Function	Number of occupied input/output points	Current consumption	
			5 V DC power supply	24 V DC power supply
FX5-CNV-BUSC	Bus conversion FX5 (extension cable type) \rightarrow FX3 extension	8 points	150 mA	-
FX5-CNV-BUS	Bus conversion FX5 (extension cable type) \rightarrow FX3 extension			

9 FX5 expansion board

Model	Function	Number of occupied input/output points	Current consumption	
			$\begin{gathered} \hline 5 \mathrm{VDC} \\ \text { power supply } \\ \hline \end{gathered}$	24 V DC power supply
FX5-232-BD	RS-232C communication	-	20 mA	-
FX5-485-BD	RS-485 communication			
FX5-422-BD-GOT	RS-422 communication (for GOT connection)		$20 \mathrm{mA*}$	

*: The current consumption will increase when the 5 V type GOT is connected.

10 FX5 expansion adapter

Model	Function	Number of occupied input/output points	Current consumption		
			5 VDC power supply	$24 \mathrm{VDC}$ power supply	24 V DC external power supply
FX5-232ADP	RS-232C communication	-	30 mA		
FX5-485ADP	RS-485 communication		20 mA		
FX5-4A-ADP*1	2 ch voltage input/current input, 2 ch voltage output/current output		10 mA	-	100 mA
FX5-4AD-ADP	4 ch voltage input/current input			20 mA	-
FX5-4AD-PT-ADP*2	4 ch temperature sensor (resistance temperature detector) input				
FX5-4AD-TC-ADP*2	4 ch temperature sensor (thermocouple) input				
FX5-4DA-ADP	4 ch voltage output/current output			-	160 mA

*1: Supported by FX5U CPU module Ver. 1.240 or later.
*2: Supported by FX5U CPU module Ver. 1.040 or later
11 FX3 extension power supply module

Model	Function	Number of occupied input/output points	Current consumption	
			5 V DC power supply	24 V DC power supply
FX3U-1PSU-5V	Extension power supply	-	1000 mA*	300 mA*

*: Derating occurs when the ambient temperature exceeds $40^{\circ} \mathrm{C}$. For details, refer to the manual.

12 FX3 intelligent function module

Model	Function	Number of occupied input/output points	Current consumption		
			5 V DC power supply	24 V DC power supply	24 V DC external power supply
FX3U-4AD	4 ch voltage input/current input	8 points	110 mA	-	90 mA
FX3U-4DA	4 ch voltage output/current output		120 mA		160 mA
FX3U-4LC	4-loop temperature control (thermocouple/resistance temperature detector/micro voltage)		160 mA		50 mA
FX3U-1PG	Pulse output for 1-axis control		150 mA		40 mA
FX3U-2HC	2 ch high-speed counter		245 mA		-
FX3U-16CCL-M	CC-Link master	8 points*1	-		240 mA
FX3U-64CCL	CC-Link intelligent device station	8 points			220 mA
FX3U-128ASL-M	AnyWireASLINK system master	8 points*2	130 mA		$100 \mathrm{~mA}^{* 3}$
FX3U-32DP	PROFIBUS-DP slave station	8 points	-	145 mA	-

*1: When using FX3U-16CCL-M as a master station, the number of remote I/O points on the network increases.
*2: The number of input/output points set by the rotary switch is added.
*3: This value does not include the supply current to remote modules (Max. 2 A).

13 FX5 safety extension module

Model	Function	Number of occupied input/output points	Current consumption		
			5 VDC power supply	$24 \mathrm{VDC}$ power supply	24 V DC external power supply
FX5-SF-MU4T5**2	Safety main modul 4 -points safety input/4-points safety output	8 points	200 mA	5 mA	125 mA
FX5-SF-8D14*2	Safety input expansion module 8-points safety input	0 points	-	-	$125 \mathrm{~mA} * 3$

[^40]
Lineup Details/Model Selection

Calculation of current consumed by extension modules (For the AC power supply type)*1

The power required for the expansion adapter, expansion board and extension module is supplied from the CPU module or extension power supply module. Use the following calculations to confirm whether the required power can be supplied. (All calculations must be satisfied.)

■ Power supply from extension power supply module ${ }^{* 4}$ [5 V DC power supply]

*1: For calculation for the DC power supply type, refer to the manual.
*2: When connecting an input module to the back stage (right side) of the extension power supply module, power will be supplied from he CPU module or a powered I/O module. of some products since the number of . connected modules may be limited.
capacity, and can be used as an external load power.
*4: When using FX3 extension power supply module, another calculation is required. For details, refer to the manual.

Rules for System Configuration
The total number of I/O points and remote I/O points for the CPU module and extension devices controllable in FX5U CPU module is 512 points or less.

Number of input/output points
The maximum number of I/O points that can be configured with FX5U is as follows.

Maximum number of
input/output points
input/output points

384 points

Number of occupied I/O points
Intelligent modules, safety main module,
 $\times 8$ points

The number of occupied I/O points does not include those of the expansion adapters, expansion boards,
connector conversion modules, and extension power supply modules.
(A): Number of input/output points of CPU module (B): Total number of input/output points of I/O module (C): Total number of intelligent modules, safety main modules and bus conversion modules

About remote I/O points
The maximum number of I/O points when using a network master module is as follows.

(D) Number of CC-Link remote I/O points

(E) Number of AnyWireASLINK remote I/O points

*1: A bus conversion module is required when using the FX3U-16CCL-M.
*2: A bus conversion module is required when using the FX3U-128ASL-M.
*3: CC-Link IE Field Network Basic remote I/O stations are not calculated as remote I/O points.
*4: 256 points when FX3U-16CCL-M is used.
*5: 128 points when FX3U-128ASL-M is used

Lineup Details/Model Selection

Limitation on power supply type when connecting

It is not possible to install both the AC type and the DC type in one system
The power supply type is limited for extension modules connectable to the following CPU modules. For details, refer to the manual.

Type/mode//power supply type	Connectable extension module	
	Type	Model/power supply type
FX5U CPU module FX5U-■Mロ/ED (AC power supply type)	Powered I/O module	FX5-32ED/ED (AC power supply type)
	Extension power supply module	FX5-1PSU-5V (AC power supply type)
FX5U CPU module FX5U- \square M $\square / \mathrm{D} \square$ (DC power supply type)	Powered I/O module	FX5-32ED/D] (DC power supply type)
	Extension power supply module	FX5-C1PS-5V (DC power supply type)

Limitation on number of modules when extending
The number of connectable modules is limited for the following products. For details, refer to the manual.

Type	Mode/tiype	Setting method/precautions
I/O module (Extension cable type)	FX5-16ET/ES-H	Up to 4 modules can be connected for the entire system.
	FX5-16ET/ESS-H	
FX5 intelligent function module	FX5-CCLGN-MS	Only 1 module can be connected in the entire system for each station type. - Master station: 1 module - Local station: 1 module When 4 modules of the FX5-40SSC-G and FX5-80SSC-G are connected to the entire system, the FX5-CCLGN-MS (master station) cannot be connected.
	FX5-CCL-MS	Only 1 module can be connected in the entire system for each station type. - Master station: 1 module*1 • Intelligent device station: 1 module*2
	FX5-ENET	Only 1 module can be connected in the entire system.
	FX5-ENET/IP	
	FX5-CCLIEF	
	FX5-DP-M	
	FX5-OPC	
	FX5-ASL-M	Only 1 module can be connected in the entire system. Use together with the FX3U-128ASL-M is not possible.
	FX5-40SSC-G	Up to 4 modules can be connected for the entire system. Up to 4 modules of the FX5-40SSC-G, FX5-80SSC-G, and FX5-CCLGN-MS (master station) can be connected in total. By using a firmware version 1.001 or later, these models can be used with FX5-SF-MU4T5/FX5-SF-8DI4. If the following intelligent function modules are also used besides the safety extension modules (FX5-SF-MU4T5/FX5-SF-8DI4) and motion modules (FX5-40SSC-G/FX5-80SSC-G), use the following firmware version specified for each of them. - FX5-20PG-P: Ver. 1.011 or later - FX5-20PG-D: Ver. 1.011 or later - FX5-CCLGN-MS: Ver. 1.002 or later - FX5-DP-M: Ver. 1.001 or later
	FX5-80SSC-G	
FX5 expansion adapter	FX5-232ADP	Up to 2 modules can be connected for the entire system.
	FX5-485ADP	
	FX5-4A-ADP*3	Up to 4 modules can be connected for the entire system. For FX5-4A-ADP with a serial number $223^{* * * *}$ or older, up to two modules can be connected in the entire system.
	FX5-4AD-ADP	
	FX5-4DA-ADP	
	FX5-4AD-PT-ADP	
	FX5-4AD-TC-ADP*4	
FX5 safety extension module	FX5-SF-MU4T5	Only 1 module of the FX5-SF-MU4T5 and up to 2 modules of the FX5-SF-8DI4 can be connected in the entire system. This module cannot be used together with the bus conversion module or FX3 extension module. If a motion module (FX5-40SSC-G, FX5-80SSC-G) is used with these modules, connect a motion module with firmware version 1.001 or later. If the following intelligent function modules are also used besides the FX5 safety extension modules and motion modules, use the following firmware version specified for each of them. - FX5-20PG-P: Ver. 1.011 or later - FX5-20PG-D: Ver. 1.011 or later - FX5-CCLGN-MS: Ver. 1.002 or later - FX5-DP-M: Ver. 1.001 or later
	FX5-SF-8DI4	
FX3 intelligent function module	FX3U-4AD	- When using FX3U-1PSU-5V: Up to 8 modules can be connected per system. - When not using FX3U-1PSU-5V: Up to 6 modules can be connected per system.
	FX3U-4DA	
	FX3U-1PG	
	FX3U-4LC	
	FX3U-128ASL-M	Only 1 module can be connected in the entire system. It cannot be used together with the FX5-ASL-M.
	FX3U-16CCL-M	Only 1 module can be connected in the entire system. When using the FX5-CCL-MS as the master station, it cannot be used together with the FX5-CCL-MS.
	FX3U-64CCL	Only 1 module can be connected in the entire system. When using the FX5-CCL-MS as the intelligent device station, it cannot be used together with the FX5-CCL-MS.
	FX3U-2HC	Up to 2 modules can be connected for the entire system. When not using the FX3U-1PSU-5V, connect immediately after the bus conversion module.

* 1: When using the FX5-CCL-MS as the master station, it cannot be used together with the FX3U-16CCL-M.
*2: When using the FX5-CCL-MS as the intelligent device station, it cannot be used together with the FX3U-64CCL
*3: When two or more FX5-4DA-ADP are used, and if they are connected adjacent to FX5-4A-ADP with a serial number 223**** or older, connect them only to one side. Do not use both sides.
* 4: When the FX5-4DA-ADP and FX5-4A-ADP are used, and if they are connected adjacent to FX5-4AD-TC-ADP, connect them to either one side. Do not use both sides.
memo

Selecting the FX5UC model

\diamond Product configuration

Type	Details	Connection details, model selection
1 CPU module	PLC with built-in CPU, power supply, input/output and program memory.	Various extension devices can be connected.
2 I/O module (extension connector type)	Product for extension I/O of extension connector type.	The maximum number of input and output points for the entire system is 256 points/384 points**. Up to 16 extension modules can be connected. (Extension power supply modules and connector conversion modules are not included in the number of connected modules.) For details, refer to "Rules for System Configuration" on p. 103.
3 FX5 extension power supply module	Module for extension power supply if CPU module's internal power supply is insufficient. Connector conversion function is also provided.	Power can be supplied to I/O module, intelligent function module, and bus conversion module. Up to 2 modules can be connected.
4 Connector conversion module	Module for connecting FX5 (extension cable type) extension module	Extension devices (extension cable type) for FX5 can be connected.
5 I/O module (extension cable type)	Product for extending I/O of extension cable type.	The maximum number of input and output points for the entire system is 256 points/384 points*1. Up to 16 extension modules can be connected. (Connector conversion modules are not included in the number of connected modules.) Up to 4 high-speed pulse I/O modules can be connected. Using this type of I/O module requires the connector conversion module.
6 FX5 intelligent function module	Module with functions other than input/output.	Up to 16 extension modules including I/O modules can be connected. (Connector conversion modules are not included in the number of connected modules.) Using this type of module requires the connector conversion module.
7 Bus conversion module	Conversion module for connecting FX3 extension module.	FX3 Series extension modules can be connected only to the right side of the bus conversion module. Using the FX5-CNV-BUS requires the connector conversion module or extension power supply module.
8 FX5 expansion adapter	Adapter connected to left side of CPU module to expand functions.	Up to 2 communication adapters and up to 4 analog adapters*2 (up to 6 adapters in total) can be connected on the left side of the CPU module.
9 FX3 intelligent function module	Module with functions other than input/output.	Up to 6 modules*3 can be connected to the right side of the bus conversion module. The bus conversion module is required for use.
10 FX5 safety extension module	Module for configuring a safety control system.	Up to 1 safety main module and up to 2 safety input extension modules can be connected. Extension modules cannot be connected on the downstream side (right side) of any safety extension module. Bus conversion modules and FX3 extension modules cannot be used simultaneously.

[^41]*3: Excluding some models

			Power sup	oly capacity		No. of	No. of
Model	Function	input/output points	5 VDC power supply	24 VDC power supply	I/O type	input points	output points
FX5UC-32MT/D	CPU module	32 points	720 mA	500 mA	DC input (sink)/transistor (sink)	16 points	16 points
FX5UC-32MT/DSS					DC input (sink/source)/transistor (source)		
FX5UC-32MT/DS-TS					DC input (sink/source)/transistor (sink)		
FX5UC-32MT/DSS-TS					DC input (sink/source)/transistor (source)		
FX5UC-32MR/DS-TS					DC input (sink/source)/relay output		
FX5UC-64MT/D		64 points			DC input (sink)/transistor (sink)	$\begin{array}{\|l\|} \hline 32 \\ \text { points } \end{array}$	32 points
FX5UC-64MT/DSS					DC input (sink/source)/transistor (source)		
FX5UC-96MT/D		96 points			DC input (sink)/transistor (sink)	$\begin{aligned} & 48 \\ & \text { points } \end{aligned}$	48 points
FX5UC-96MT/DSS					DC input (sink/source)/transistor (source)		

2 I/O module (extension connector type)

Model	I/O type	Number of occupied input/output points	Current consumption		
			5 V DC power supply	24 V DC power supply	24 V DC external power supply (24 V DC power supply for input circuit)
FX5-C16EX/D	DC input (sink)	16 points	100 mA	-	65 mA
FX5-C16EX/DS	DC input (sink/source)				
FX5-C32EX/D	DC input (sink)	32 points	120 mA		
FX5-C32EX/DS	D				130 mA
FX5-C32EX/DS-TS					
FX5-C16EYT/D	Transistor output (sink)	16 points	100 mA	100 mA	-
FX5-C16EYT/DSS	Transistor output (source)				
FX5-C16EYR/D-TS	Relay output				
FX5-C32EYT/D	Transistor output (sink)	32 points	120 mA	200 mA	
FX5-C32EYT/DSS	Transistor output (source)				
FX5-C32EYT/D-TS	Transistor output (sink)				
FX5-C32EYT/DSS-TS	Transistor output (source)				
FX5-C32ET/D	DC input (sink)/transistor output (sink)	32 points	120 mA	100 mA	65 mA
FX5-C32ET/DSS	DC input (sink/source)/transistor output (source)				
FX5-C32ET/DS-TS	DC input (sink/source)/transistor output (sink)				
FX5-C32ET/DSS-TS	DC input (sink/source)/transistor output (source)				

3 FX5 extension power supply module

Model	Function	Number of occupied input/output points	Power supply capacity	
			5 V DC power supply	24 V DC power supply
FX5-C1PS-5V	Extension power supply	-	$1200 \mathrm{~mA}^{*}$	$625 \mathrm{~mA}^{*}$

*: Derating occurs when the ambient temperature exceeds $40^{\circ} \mathrm{C}$. For details, refer to the manual
Connector conversion module

Model	Function		Number of occupied input/output points	5 V DC internal consumption current consumption		24 V DC internal current consumption
FX5-CNV-IFC	Connector conversion (FX5 (Extension connector type) \rightarrow FX5 (Extension cable type))	-		-		

5-1) I/O module (DC power supply/DC input type) (extension cable type)

Model	Function	Number of occupied input/ output points	Power supply capacity		V/O type
			5 V DC power supply	24 V DC power supply	
FX5-32ER/DS	Input/output module	32 points	965 mA	310 mA	DC input (sink/source)/relay output
FX5-32ET/DS					DC input (sink/source)/transistor output (sink)
FX5-32ET/DSS					DC input (sink/source)/transistor output (source)

Lineup Details/Model Selection

$5-2$ I/O module (extension cable type)

			Current consumption		
Model	Function	Number of occupied input/output points	5 V DC power supply	24 V DC power supply	24 V DC external power supply (24 V DC power supply for input circuit)
FX5-8EXES	DC input (sink/source)	8 points	75 mA		50 mA
FX5-16EX/ES	DC input (sink/source)	16 points	100 mA		85 mA
FX5-8EYR/ES	Relay output				
FX5-8EYT/ES	Transistor output (sink)	8 points	75 mA	75 mA	
FX5-8EYT/ESS	Transistor output (source)				
FX5-16EYR/ES	Relay output				
FX5-16EYT/ES	Transistor output (sink)	16 points	100 mA	125 mA	
FX5-16EYT/ESS	Transistor output (source)				
FX5-16ER/ES	DC input (sink/source)/relay output				
FX5-16ET/ES	DC input (sink/source)/transistor output (sink)	16 points	100 mA	85 mA	40 mA
FX5-16ET/ESS	DC input (sink/source)/transistor output (source)				
FX5-16ET/ES-H*	DC input (sink/source)/transistor output (sink)	16 points	100	85	40
FX5-16ET/ESS-H*	DC input (sink/source)/transistor output (source)	¢ poins	,	85	

* : Supported by FX5UC CPU module Ver. 1.030 or later

6 FX5 intelligent function module

Model	Function	Number of occupied input/output points	Current consumption		
			5 V DC power supply	$24 \mathrm{VDC}$ power supply	24 V DC external power supply
FX5-4AD*1	4-ch voltage/current input	8 points	100 mA	40 mA	-
FX5-4DA*1	4-ch voltage/current output	8 points	100 mA	-	150 mA
FX5-8AD*1	8-ch voltage/current/thermocouple/resistance temperature detector input	8 points	-	40 mA	100 mA
FX5-4LC*1	4-ch temperature control (thermocouple/resistance temperature detector/micro voltage)	8 points	140 mA	-	25 mA
FX5-20PG-P*1	Pulse output for 2-axis control (transistor output)	8 points	-	-	120 mA
FX5-20PG-D*1	Pulse output for 2-axis control (differential driver output)	8 points	-	-	165 mA
FX5-40SSC-S	Simple motion 4-axis control (SSCNET III/H compatible)	8 points	-	-	250 mA
FX5-80SSC-S	Simple motion 8-axis control (SSCNET III/H compatible)	8 points	-	-	250 mA
FX5-40SSC-G*2	Motion 4-axis control (CC-Link IE TSN compatible)	8 points	-	-	240 mA
FX5-80SSC-G*2	Motion 8-axis control (CC-Link IE TSN compatible)	8 points	-	-	240 mA
FX5-CCLGN-MS*3	CC-Link IE TSN master/local	8 points	-	-	220 mA
FX5-ENET*4	Ethernet communication	8 points	-	110 mA	-
FX5-ENET/IP*4	EtherNet/IP communication, Ethernet communication	8 points	-	110 mA	-
FX5-CCL-MS*1	CC-Link system master/intelligent device station	8 points*5	-	-	100 mA
FX5-CCLIEF*6	CC-Link IE Field Network intelligent device station	8 points	10 mA	-	230 mA
FX5-ASL-M ${ }^{* 1}$	AnyWireASLINK system master	8 points	200 mA	-	$100 \mathrm{~mA}^{* 7}$
FX5-DP-M*4	PROFIBUS-DP master	8 points	-	150 mA	-
FX5-OPC**	OPC UA communication	8 points	-	110 mA	-

*1: Supported by FX5UC CPU module Ver. 1.050 or later.
*2: Supported by FX5UC CPU module Ver. 1.230 or later.
*3: Supported by FX5UC CPU module Ver. 1.210 or later.
*4: Supported by FX5UC CPU module Ver. 1.110 or later.
*5: When using FX5-CCL-MS as a master station, the number of remote I/O points on the network increases.
*6: Supported by FX5UC CPU module Ver. 1.030 or later.
*7: This value does not include the supply current to remote modules (Max. 2 A).

* 8: Supported by FX5UC CPU module Ver. 1.245 or later.

7 Bus conversion module

Model	Function	Number of occupied input/output points	Current consumption	
			5 V DC power supply	24 V DC power supply
FX5-CNV-BUSC	Bus conversion FX5 (extension connector type) \rightarrow FX3 extension	8 points	150 mA	-
FX5-CNV-BUS	Bus conversion FX5 (extension cable type) \rightarrow FX3 extension			

8 FX5 expansion adapter

Model	Function	Number of occupied input/output points	Current consumption		
			$\begin{aligned} & 5 \mathrm{VDC} \\ & \text { power supply } \end{aligned}$	$\begin{gathered} 24 \mathrm{~V} \text { DC } \\ \text { power supply } \end{gathered}$	24 V DC external power supply
FX5-232ADP	RS-232C communication	-	30 mA	30 mA	-
FX5-485ADP	RS-485 communication		20 mA		
FX5-4A-ADP*1	2 ch voltage input/current input, 2 ch voltage output/current output		10 mA	-	100 mA
FX5-4AD-ADP	4 ch voltage input/current input			20 mA	-
FX5-4AD-PT-ADP*2	4 ch temperature sensor (resistance temperature detector) input				
FX5-4AD-TC-ADP*2	4 ch temperature sensor (thermocouple) input				
FX5-4DA-ADP	4 ch voltage output/current output			-	160 mA

*1: Supported by FX5UC CPU module Ver. 1.240 or later.
*2: Supported by FX5UC CPU module Ver. 1.040 or later.
9 FX3 intelligent function module

Model	Function	Number of occupied input/output points	Current consumption		
			$\begin{gathered} 5 \mathrm{VDC} \\ \text { power supply } \end{gathered}$	$24 \mathrm{VDC}$ power supply	24 V DC external power supply
FX3U-4AD	4 ch voltage input/current input	8 points	110 mA	-	90 mA
FX3U-4DA	4 ch voltage output/current output		120 mA		160 mA
FX3U-4LC	4-loop temperature control (thermocouple/resistance temperature detector/micro voltage)		160 mA		50 mA
FX3U-1PG	Pulse output for 1-axis control		150 mA		40 mA
FX3U-2HC	2 ch high-speed counter		245 mA		-
FX3U-16CCL-M	CC-Link master	8 points*1	-		240 mA
FX3U-64CCL	CC-Link intelligent device station	8 points			220 mA
FX3U-128ASL-M	AnyWireASLINK system master	8 points*2	130 mA		$100 \mathrm{~mA}{ }^{* 3}$
FX3U-32DP	PROFIBUS-DP slave station	8 points	-	145 mA	-

*1: When using FX3U-16CCL-M as a master station, the number of remote I / O points on the network increases.
*2: The number of input/output points set by the rotary switch is added
*3: This value does not include the supply current to remote modules.
10 FX5 safety extension module

Model	Function	Number of occupied input/output points	Current consumption		
			$\begin{gathered} 5 \mathrm{VDC} \\ \text { power supply } \\ \hline \end{gathered}$	24 V DC power supply	24 V DC external power supply
FX5-SF-MU4T5*1*2	Safety main module 4-points safety input/4-points safety output	8 points	200 mA	5 mA	125 mA
FX5-SF-8DI4*2	Safety input expansion module 8-points safety input	0 points	-	-	$125 \mathrm{~mA}^{* 3}$

[^42]
Lineup Details/Model Selection

Calculation of current consumed by extension modules

The power required for the expansion adapter and extension module is supplied from the CPU module.
Use the following calculations to confirm whether the required power can be supplied. (All calculations must be satisfied.)

- Power supply from extension power supply module

If the calculation results are negative, the power capacity is exceeded so review the system configuration.

[24 V DC power supply]

24 V DC power supply capacity (Extension power supply module)
 0 mA

Refer to the next section for the details of some products since the number of connected modules may be limited.

Rules for System Configuration
The total number of I/O points and remote I/O points for the CPU module and extension devices controllable in FX5UC CPU module is 512 points or less.

Number of input/output points
The maximum number of I/O points that can be configured with FX5UC is as follows.

Maximum number of
input/output points

Number of occupied I/O points

The number of occupied I/O points does not include those of the expansion adapters, connector
conversion modules, and extension power supply modules.
$\times 8$ points
(A): Number of input/output points of CPU module (B): Total number of input/output points of $1 / 0$ module (C): Total number of intelligent modules, safety main modules and bus conversion modules

About remote I/O points
The maximum number of I/O points when using a network master module is as follows.

(D) Number of CC-Link remote I/O points

(E) Number of AnyWireASLINK remote I/O points

*1: A bus conversion module is required when using the FX3U-16CCL-M
*2: A bus conversion module is required when using the FX3U-128ASL-M.
*3: CC-Link IE Field Network Basic remote I/O stations are not calculated as remote I/O points.
*4: 256 points when FX3U-16CCL-M is used.
*5: 128 points when FX3U-128ASL-M is used.

Lineup Details/Model Selection

Limitation on power supply type when connecting
The power supply type is limited for extension modules connectable to the following CPU modules. For details, refer to the manual.

Type/model/power supply type	Connectable extension module	
	Type	Model/power supply type
FX5UC CPU module FX5UC-■Mロ/Dロ (DC power supply type)	Powered l/O module	FX5-32ED/D \square (DC power supply type)
	Extension power supply module	FX5-C1PS-5V (DC power supply type)

Limitation on number of modules when extending

The number of connectable modules is limited for the following products. For details, refer to the manual.

\begin{tabular}{|c|c|c|}
\hline Type \& Model/type \& Setting method/precautions

\hline \multirow[b]{2}{*}{I/O module (Extension cable type)} \& FX5-16ET/ES-H \& \multirow[b]{2}{*}{Up to 4 modules can be connected for the entire system.}

\hline \& FX5-16ET/ESS-H \&

\hline \multirow{9}{*}{FX5 intelligent function module} \& FX5-40SSC-G

FX5-80SSC-G \& | Up to 4 modules can be connected for the entire system. |
| :--- |
| Up to 4 modules of the FX5-40SSC-G, FX5-80SSC-G, and FX5-CCLGN-MS (master station) can be connected in total. |
| By using a firmware version 1.001 or later, these models can be used with FX5-SF-MU4T5/FX5-SF-8DI4. If the following intelligent function modules are also used besides the safety extension modules (FX5-SF-MU4T5/FX5-SF-8DI4) and motion modules (FX5-40SSC-G/FX5-80SSC-G), use the following firmware version specified for each of them. |
| - FX5-20PG-P: Ver. 1.011 or later |
| - FX5-20PG-D: Ver. 1.011 or later |
| - FX5-CCLGN-MS: Ver. 1.002 or later |
| - FX5-DP-M: Ver. 1.001 or later |

\hline \& FX5-CCLGN-MS \& | Only 1 module can be connected in the entire system for each station type. |
| :--- |
| - Master station: 1 module |
| - Local station: 1 module |
| When 4 modules of the FX5-40SSC-G and FX5-80SSC-G are connected to the entire system, the FX5-CCLGN-MS (master station) cannot be connected. |

\hline \& FX5-CCL-MS \& | Only 1 module can be connected in the entire system for each station type. |
| :--- |
| - Master station: 1 module*1 |
| - Intelligent device station: 1 module*2 |

\hline \& FX5-ENET \& \multirow{5}{*}{Only 1 module can be connected in the entire system.}

\hline \& FX5-ENET/IP \&

\hline \& FX5-CCLIEF \&

\hline \& FX5-DP-M \&

\hline \& FX5-OPC \&

\hline \& FX5-ASL-M \& Only 1 module can be connected in the entire system. Use together with the FX3U-128ASL-M is not possible.

\hline \multirow{7}{*}{FX5 expansion adapter} \& FX5-232ADP \& \multirow[t]{2}{*}{Up to 2 modules can be connected for the entire system.}

\hline \& FX5-485ADP \&

\hline \& FX5-4A-ADP*3 \& \multirow{5}{*}{| Up to 4 modules can be connected for the entire system. |
| :--- |
| For FX5-4A-ADP with a serial number $223^{* * * *}$ or older, up to two modules can be connected in the entire system. |}

\hline \& FX5-4AD-ADP \&

\hline \& FX5-4DA-ADP \&

\hline \& FX5-4AD-PT-ADP \&

\hline \& FX5-4AD-TC-ADP*4 \&

\hline \multirow[b]{2}{*}{FX5 safety extension module} \& FX5-SF-MU4T5 \& \multirow[t]{2}{*}{| Only 1 module of the FX5-SF-MU4T5 and up to 2 modules of the FX5-SF-8DI4 can be connected in the entire system. |
| :--- |
| This module cannot be used together with the bus conversion module or FX3 extension module. If a motion module (FX5-40SSC-G, FX5-80SSC-G) is used with these modules, connect a motion module with firmware version 1.001 or later. |
| If the following intelligent function modules are also used besides the FX5 safety extension modules and motion modules, use the following firmware version specified for each of them. |
| - FX5-20PG-P: Ver. 1.011 or later |
| - FX5-20PG-D: Ver. 1.011 or later |
| - FX5-CCLGN-MS: Ver. 1.002 or later |
| - FX5-DP-M: Ver. 1.001 or later |}

\hline \& FX5-SF-8D14 \&

\hline \multirow{8}{*}{FX3 intelligent function module} \& FX3U-4AD \& \multirow{4}{*}{Up to 6 modules can be connected for the entire system.}

\hline \& FX3U-4DA \&

\hline \& FX3U-1PG \&

\hline \& FX3U-4LC \&

\hline \& FX3U-128ASL-M \& Only 1 module can be connected in the entire system. It cannot be used together with the FX5-ASL-M.

\hline \& FX3U-16CCL-M \& | Only 1 module can be connected in the entire system. |
| :--- |
| When using the FX5-CCL-MS as the master station, it cannot be used together with the FX5-CCL-MS. |

\hline \& FX3U-64CCL \& | Only 1 module can be connected in the entire system. |
| :--- |
| When using the FX5-CCL-MS as the intelligent device station, it cannot be used together with the FX5-CCL-MS. |

\hline \& FX3U-2HC \& Up to 2 modules can be connected for the entire system. Connect immediately after the bus conversion module.

\hline
\end{tabular}

*1: When using the FX5-CCL-MS as the master station, it cannot be used together with the FX3U-16CCL-M.
*2: When using the FX5-CCL-MS as the intelligent device station, it cannot be used together with the FX3U-64CCL.
3: When two or more FX5-4DA-ADP are used, and if they are connected adjacent to FX5-4A-ADP with a serial number $223^{ * * *}$ or older, connect them only to one side. Do not use both sides.
*4: When the FX5-4DA-ADP and FX5-4A-ADP are used, and if they are connected adjacent to FX5-4AD-TC-ADP, connect them to either one side. Do not use both sides.

Safety Extension Module

The safety extension module is designed to configure a safety control system with the FX5UJ/FX5U/FX5UC CPU module. A safety control system can be easily introduced by connecting the safety extension module, and general control and safety control can be performed only with this one system. The module has received the certification of the international safety standard (category 4, PL e, SIL3).

Safety main module

The safety extension module is designed to configure a safety control system with the FX5UJ/FX5U/FX5UCCPU module. A safety control system can be configured only by connecting the safety main module to the FX5UJ/FX5U/FX5UC CPU module.

Model	Specifications		Compatible CPU module			
			FX5S	FX5UJ	FX5U	FX5UC
FX5-SF-MU4T5	Total No. of points	8 points	\times	O*1	O*1	O*1*2
	Number of safety inputs	4 points				
	Number of safety outputs	4 points				
	Maximum number of connectable modules	1 module				
	Safety integrity level (SIL)	SIL3 (IEC 61508)				
	Performance level (PL)	PLe (DIN EN ISO 13849-1)				
	Off delay time	0/0.5/1/1.5/2/2.5/3/3.5/4/5s				
	Program for a safety control	9 types				

*1: Supported by FX5UJ CPU modules Ver. 1.010 or later. Supported by FX5U/FX5UC CPU module Ver. 1.200 or later.
*2: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).

Safety input expansion module

The safety extension module is designed to configure a safety control system with the FX5UJ/FX5U/FX5UC CPU module. Safety input can be extended by connecting the safety input extension module.

Model	Specifications		Compatible CPU module			
			FX5S	FX5UJ	FX5U	FX5UC
FX5-SF-8DI4	Total No. of points	8 points	\times	○*1	O*1	$\bigcirc * 1 * 2$
	Number of safety inputs	8 points				
	Number of safety outputs	-				
	Maximum number of connectable modules	2 modules				
	Safety integrity level (SIL)	SIL3 (IEC 61508)				
	Performance level (PL)	PLe (DIN EN ISO 13849-1)				
	Off delay time	-*3				
	Program for a safety control	9 types				

[^43]
Safety Extension Module

FX5-SF-MU4T5 safety main module

Features

1) Module for configuring a safety control system.
2) It can be connected directly to the FX5UJ/FX5U/FX5UC CPU module. An existing general control system can be extended to a safety control system only by installing the safety main module.
3) A sequence program for safety control is unnecessary. A safety control system can be configured only by selecting a built-in program (9 kinds).
4) If any error occurs on the safety control side, the error status can be easily checked on the monitor or the diagnosis screen of GX Works3, and troubleshooting can be easily performed.

Safety precautions

FX5-SF-MU4T5 is jointly developed and manufactured by Mitsubishi Electric Corporation and SICK AG. The warranty for this module differs from that of other PLC products. For warranty and specification, refer to the manual.
*1: For details regarding the general inputs, refer to the manual.
*2: The minimum switch-off time is the minimum time takes until a switch-off condition is detected after a module is switched off.
*3: A response time without any sensors. If a sensor is connected, the response time of the connected sensor is added to this value.
*4: The time from when a muting condition is enabled (I2/13 are turned ON) until a muting function is activated.
*5: Indicates the maximum switch-off time when a muting error occurs.
*6: A muting input (I2 or 13) keeps OFF for the specified period of time.
*7: A time from when an ERROR LED starts flashing.
*8: A cross-circuit detection is performed only in the module.
*9: A response time without any sensors. If a sensor is connected, the response time of the connected sensor is added to this value.
\checkmark Specifications

Items			Specifications
Safety integrity level			SIL3 (IEC 61508)/SILCL 3 (IEC 62061)
Category			Category 4 (DIN EN ISO 13849-1)
Performance level			PLe (DIN EN ISO 13849-1)
PFHd			1.5×10^{-8}
TM (mission time)			20 years (EN ISO 13849-1)
	Number of inputs		4 points
Input voltage (ON)			13 V DC or more (13 V DC to 30 V DC)
Safety inputs${ }^{* i}$	Input voltage (OFF)		5 V DC or less (-5 V DC to 5 V DC)
	Input current (ON)		$3 \mathrm{~mA}(2.4 \mathrm{~mA}$ to 3.8 mA$)$
	Input current (OFF)		2.1 mA or less (-2.5 mA to 2.1 mA$)$
	Input response time (filter delay)		2 ms
	Minimum switch-off time ${ }^{* 2 * 3}(10 / 11)$	Program 1, 2, 4, 5, 6, and 9	24 ms
		Program 3.1, 7, and 8	4 ms
		Program 3.2	$76 \mathrm{~ms} / 24 \mathrm{~ms}$
	Minimum switch-off time ${ }^{* 2 * 3}$ (12/3)	Program 4, 5, and 6	24 ms
		Program 1, 2, 3, 7, 8, and 9	4 ms
	Power-up time		70 ms
	Synchronous time monitoring	Program 1 and 2	1500 ms
		Program 4 and 5	500 ms
	Muting $\mathrm{ON}^{* 4}$	Program 3	61 ms
	Muting OFF	Program 3	$61 \mathrm{~ms} \mathrm{(165} \mathrm{ms*5)}$
	Muting gap suppression*6	Program 3	94 ms to 100 ms
	Reset time		106 ms
	Maximum teach-in time of the ENTER button*7		3 s
	Duration of actuation of a reset button (X0 and X1)		50 ms to 5 s
Test outputs			For details, refer to the manual.
Safety outputs	Number of outputs		4 points
	Output method		Source output, short-circuit protection, cross-circuit detection*8
	Output voltage		18.4 V DC to 30.0 V DC
	Output current		$\begin{array}{\|l\|} \hline 2.0 \mathrm{~A}\left(@ T \mathrm{~A} \leq 45^{\circ} \mathrm{C}\right) \\ 1.5 \mathrm{~A}\left(@ \mathrm{~T} \mathrm{~A} \leq 55^{\circ} \mathrm{C}\right) \\ \hline \end{array}$
	Total current Isum		$\begin{aligned} & 4.0 \mathrm{~A}\left(@ T \mathrm{~A} \leq 45^{\circ} \mathrm{C}\right) \\ & 3.0 \mathrm{~A}\left(@ T \mathrm{~A} \leq 55^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$
	Leak current (in the switch OFF status)		1 mA or less
	Response time*9 (10/11)	Program 1, 2, 4, 5, 6, and 9	29 ms
		Program 3.1, 7, and 8	9 ms
		Program 3.2	$81 \mathrm{~ms} / 29 \mathrm{~ms}$
	Response time ${ }^{* 9}(12 / 13)$	Program 4, 5, and 6	29 ms
		Program 1, 2, 3, 7, 8, and 9	9 ms
	Response time (XSO)		9 ms
	Off delay time		0/0.5/1/1.5/2/2.5/3/3.5/4/5s
Programs			0 : Inactive 1: OR control (1) 2: OR control (2) 3: Muting control 4: Two-hand control (1) 5: Two-hand control (2) 6: AND control (1) 7: AND control (2) 8: Independent control 9: AND control (3)
Power supply			5 V DC $200 \mathrm{~mA}, 24$ V DC 5 mA (internal power supply) 24 V DC (+20\%, -15\%) 125 mA (external power supply)
Compatible CPU module			FX5UJ: Ver. 1.010 or later FX5U, FX5UC: Ver. 1.200 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Applicable engineering tool			FX5UJ: GX Works3 Ver. 1.075D or later FX5U, FX5UC: GX Works3 Ver. 1.060N or later
Number of occupied I/O points			8 points (Either input or output is available for counting.)
Number of connectable modules			FX5UJ: Up to 1 module FX5U: Up to 1 module FX5UC: Up to 1 module
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$			$50 \times 90 \times 102.2$
MASS (Weight): kg			Approx. 0.3

Features

1) Safety input can be extended on the configured safety control system.
2) A sequence program for safety control is unnecessary. A safety control system can be configured only by selecting a built-in program (9 kinds).
3) If any error occurs on the safety control side, the error status can be easily checked on the monitor or the diagnosis screen of GX Works3, and troubleshooting can be easily performed.

\checkmark Safety precautions

FX5-SF-8DI4 is jointly developed and manufactured by Mitsubishi Electric Corporation and SICK AG.
The warranty for this module differs from that of other PLC products. For warranty and specification, refer to the manual.

Specifications

Items			Specifications
Safety integrity level			SIL3 (IEC 61508)/SILCL 3 (IEC 62061)
Category			Category 4 (DIN EN ISO 13849-1)
Performance level			PLe (DIN EN ISO 13849-1)
PFHd			1.5×10^{-8}
Tm (mission time)			20 years (EN ISO 13849-1)
Safety inputs	Number of inputs		8 points
	Input voltage (ON)		13 V DC or more (13 V DC to $30 \mathrm{~V} \mathrm{DC)}$
	Input voltage (OFF)		5 V DC or less (-5V DC to 5 V DC)
	Input current (ON)		$3 \mathrm{~mA}(2.4 \mathrm{~mA}$ to 3.8 mA$)$
	Input current (OFF)		2.1 mA or less (-2.5 mA to 2.1 mA)
	Minimum switch-off time	Program 1, 2, 3, 4, 5, and 8	24 ms
		Program 6 and 7	4 ms
	Synchronous time monitoring	Program 3 and 5	1500 ms
	Power-up time		70 ms
Test outputs			For details, refer to the manual.
Response time		Program 1, 2, 3, 4, 5, and 8	33 ms
		Program 6 and 7	13 ms
Programs			0: Inactive 1: AND link (single channel) 2: AND link (dual channel) (1) 3: AND link (dual channel) (2) 4: AND link (dual channel) (3) 5: AND link (dual channel) (4) 6: AND link (dual channel) (5) 7: OR link (dual channel) 8: Bypass 9: All paths batch connection
Power supply			$24 \text { V DC (+20\%, -15\%) }$ 125 mA (Internal power supply from the FX5-SF-MU4T5)
Compatible CPU module			FX5UJ: Ver. 1.010 or later FX5U, FX5UC: Ver. 1.200 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Applicable engineering tool			FX5UJ: GX Works3 Ver. 1.075D or later FX5U, FX5UC: GX Works3 Ver. 1.060N or later
Number of occupied I/O points			0 points (no occupied points)
Number of connectable modules			FX5UJ: Up to 2 modules FX5U: Up to 2 modules FX5UC: Up to 2 modules
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$			$50 \times 90 \times 102.2$
MASS (Weight): kg			Approx. 0.25

Safety Extension Module

Example of built-in program

Safety main module built-in program

For the details of the programs and wiring of the safety main module and safety extension module, refer to the manuals, quick start guide for safety extension module (L(NA)08708ENG) or safety extension module configuration guide (see page 63).

Program
number Outline

For the terms in the logic diagrams, refer to the following.

Left side of terminal arrangement		Right side of terminal arrangement	
Name	Description	Name	Description
IO	Safety input 0	Q0	Safety output 0
I1	Safety input 1	Q1	Safety output 1
I2	Safety input 2	Q2	Safety output 2
I3	Safety input 3	Q3	Safety output 3
AND	AND Operation	OR	OR Operation
N/C	An abbreviation for normally closed.	N/O	An abbreviation for normally open.

I/O Module

The I/O module is a product for extending inputs/outputs.
Some products are powered.

Powered input/output modules

Powered input/output module is a powered input/output extension device.
Like with the CPU module, various I/O modules and intelligent function modules can be connected to the rear stage of extension module.

List of powered input/output modules

Model		Total No. of points	No. of input/output points, Input/output type				Compatible CPU module				MASS (Weight): kg	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	
		Input	Output		FX5S	FX5UJ	FX5U	FX5UC					
AC power supply type	FX5-32ER/ES		32 points	16 points	$\begin{gathered} 24 \mathrm{~V} \mathrm{DC} \\ \text { (sink/source) } \end{gathered}$	16 points	Relay	\times	\bigcirc	O*1	\times	Approx. 0.65	$150 \times 90 \times 83$
	FX5-32ET/ES	Transistor (sink)											
	FX5-32ET/ESS	Transistor (source)											
DC power supply type	FX5-32ER/DS	32 points	16 points	24 V DC (sink/source)	16 points	Relay	\times	\times	O*2	O*3	Approx. 0.65	$150 \times 90 \times 83$	
	FX5-32ET/DS					Transistor (sink)							
	FX5-32ET/DSS					Transistor (source)							

*1: Can be connected only to the AC power type system.
*2: Can be connected only to the DC power type system.
*3: Connection with FX5UC requires connector conversion module (FX5-CNV-IFC).

Connection cable

The extension cable for connection to the right side of the front-stage device is offered as an accessory of each powered I/O module.

I/O module

Input modules/output modules receive the power from the CPU module, and extend input/output points. Each module can be offered as the extension cable type or extension connector type.

Extension cable type

Extension connector type

List of output modules (extension cable type)

*: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
List of input/output modules (extension cable type)

Model		Total No. of points	No. of input/output points, Input/output type				Compatible CPU module				MASS (Weight): kg	$\begin{gathered} \text { External } \\ \text { dimensions } \\ \mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{~mm}) \end{gathered}$	
		Input	Output		FX5S	FX5UJ	FX5U	FX5UC					
	FX5-16ER/ES		16 points	8 points	$\begin{gathered} 24 \text { V DC } \\ \text { (sink/source) } \end{gathered}$	8 points	Relay	\times	\bigcirc	\bigcirc	O*	Approx. 0.25	$40 \times 90 \times 83$
	FX5-16ET/ES	Transistor (sink)											
	FX5-16ET/ESS	Transistor (source)											

[^44]
List of high-speed pulse input/output modules (extension cable type)

Model		Total No. of points	No. of input/output points, Input/output type				Compatible CPU module				MASS (Weight): kg	Externaldimensions$\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	
		Input	Output		FX5S	FX5UJ	FX5U	FX5UC					
	FX5-16ET/ES-H		16 points	8 points	24 V DC (sink/source)	8 points	Transistor (sink)	\times	\bigcirc	\bigcirc	O*	Approx. 0.25	$40 \times 90 \times 83$
	FX5-16ET/ESS-H	Transistor (source)											

*: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).

Connection cable

Extension cable type input/output modules are equipped with the extension cable for connection to the right side of the front-stage device.

List of input modules (extension connector type)

Model		Total No. of points	No. of input/output points, Input/output type				Compatible CPU module				MASS (Weight): kg	$\begin{gathered} \text { External } \\ \text { dimensions } \\ \mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{~mm}) \end{gathered}$	
		Input	Output		FX5S	FX5UJ	FX5U	FX5UC					
	FX5-C16EXD		16 points	16 points	$\begin{gathered} 24 \mathrm{~V} \text { DC } \\ \text { (sink) } \\ \hline \end{gathered}$	-	-	\times	O*	O*	\bigcirc	Approx. 0.1	$14.6 \times 90 \times 87$
	FX5-C16EXIDS	24 V DC (sink/source)			Approx. 0.1							$14.6 \times 90 \times 87$	
	FX5-C32EXD	32 points	32 points	$\begin{gathered} 24 \text { V DC } \\ \text { (sink) } \\ \hline \end{gathered}$	Approx. 0.15							$20.1 \times 90 \times 87$	
	FX5-C32EXIDS			24 V DC (sink/source)	Approx. 0.15							$20.1 \times 90 \times 87$	
	FX5-C32EX/DS-TS				Approx. 0.15							$20.1 \times 90 \times 93.7$	

*: Connection with FX5UJ/FX5U CPU module requires connector conversion module (FX5-CNV-IFC).
List of output modules (extension connector type)

Model		Total No. of points	No. of input/output points, Input/output type				Compatible CPU module				MASS (Weight): kg	$\begin{gathered} \text { External } \\ \text { dimensions } \\ \mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{~mm}) \end{gathered}$	
		Input	Output		FX5S	FX5UJ	FX5U	FX5UC					
	FX5-C16EYT/D		16 points	-	-	16 points	Transistor (sink)	\times	O*	O*	\bigcirc	Approx. 0.1	$14.6 \times 90 \times 87$
	FX5-C16EYT/DSS	Transistor (source)					Approx. 0.1					$14.6 \times 90 \times 87$	
	FX5-C16EYR/D-TS	Relay					Approx. 0.2					$30.7 \times 90 \times 93.7$	
	FX5-C32EYT/D	32 points	32 points			Transistor (sink)	Approx. 0.15					$20.1 \times 90 \times 87$	
	FX5-C32EYT/DSS					Transistor (source)	Approx. 0.15					$20.1 \times 90 \times 87$	
	FX5-C32EYT/D-TS					Transistor (sink)	Approx. 0.15					$20.1 \times 90 \times 93.7$	
	FX5-C32EYT/DSS-TS					Transistor (source)	Approx. 0.15					$20.1 \times 90 \times 93.7$	

* : Connection with FX5UJ/FX5U CPU module requires connector conversion module (FX5-CNV-IFC).

List of I/O modules (extension connector type)

Model		Total No. of points	No. of input/output points, Input/output type				Compatible CPU module				MASS (Weight): kg	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	
		Input	Output		FX5S	FX5UJ	FX5U	FX5UC					
	FX5-C32ET/D		32 points	16 points	24 V DC (sink)	16 points	Transistor (sink)	\times	O*	O*	\bigcirc	Approx. 0.15	$20.1 \times 90 \times 87$
	FX5-C32ET/DSS	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & \text { (sink/source) } \end{aligned}$			Transistor (source)		Approx. 0.15					$20.1 \times 90 \times 87$	
	FX5-C32ET/DS-TS				Transistor (sink)		Approx. 0.15					$20.1 \times 90 \times 93.7$	
	FX5-C32ET/DSS-TS				Transistor (source)		Approx. 0.15					$20.1 \times 90 \times 93.7$	

[^45]
Examples of combinations of FX5UJ inputs/outputs

The table below shows examples of combinations of FX5UJ extension modules. The contents of combinations can be described based on the number of input points.

- In addition to the combinations shown below, various combinations can be made by changing selected I/O modules and extension modules

Number of IO points		CPU module			Input/output module		Powered input/output module FX5-32E		Input/output module		IO total (Total occupied)	
Input	Output	Module model	Input	Output	Input	Output	Input	Output	Input	Output		
14	10	24M	14	10							24	(32)
14	18	24M	14	10	0	8					32	(40)
14	26	24M	14	10	0	16					40	(48)
14	34	24M	14	10	0	24					48	(56)
14	42	24M	14	10	0	32					56	(64)
14	50	24M	14	10	0	40					64	(72)
14	58	24M	14	10	0	48					72	(80)
14	74	24M	14	10	0	64					88	(96)
24	16	40M	24	16							40	
24	24	40M	24	16	0	8					48	
24	32	40M	24	16	0	16					56	
24	40	40M	24	16	0	24					64	
24	48	40M	24	16	0	32					72	
24	56	40M	24	16	0	40					80	
24	64	40M	24	16	0	48					88	
24	80	40M	24	16	0	64					104	
30	10	24M	14	10	16	0					40	(48)
30	26	24M	14	10	0	0	16	16			56	(64)
30	26	24M	14	10	16	16					56	(64)
30	34	24M	14	10	0	8	16	16			64	(72)
30	42	24M	14	10	0	16	16	16			72	(80)
30	50	24M	14	10	0	24	16	16			80	(88)
30	58	24M	14	10	0	32	16	16			88	(96)
30	66	24M	14	10	0	40	16	16			96	(104)
30	74	24M	14	10	0	48	16	16			104	(112)
30	90	24M	14	10	0	64	16	16			120	(128)
36	24	60M	36	24							60	(64)
36	32	60M	36	24	0	8					68	(72)
36	40	60M	36	24	0	16					76	(80)
36	48	60M	36	24	0	24					84	(88)
36	56	60M	36	2	40	32					92	(96)
36	64	60M	36	24	0	40					100	(104)
36	72	60M	36	24	0	48					108	(112)
36	88	60M	36	24	0	64					124	(128)

Number of I/O points		CPU module			Input/output module		Powered input/output module FX5-32E		Input/output module		IO total (Total occupied)	
Input	Output	Module mode	Input	Output	Input	Output	Input	Output	Input	Output		
40	16	40M	24	16	16	0					56	
40	32	40M	24	16	0	0	16	16			72	
40	32	40M	24	16	16	16					72	
40	40	40M	24	16	0	8	16	16			80	
40	48	40M	24	16	0	16	16	16			88	
40	48	40M	24	16	16	32					88	
40	56	40M	24	16	0	24	16	16			96	
40	64	40M	24	16	0	32	16	16			104	
40	72	40M	24	16	0	40	16	16			112	
40	80	40M	24	16	0	48	16	16			120	
40	96	40M	24	16	0	64	16	16			136	
46	10	24M	14	10	32	0					56	(64)
46	26	24M	14	10	16	0	16	16			72	(80)
46	42	24M	14	10	0	0	16	16	16	16	88	(96)
46	42	24M	14	10	16	16	16	16			88	(96)
46	50	24M	14	10	0	8	16	16	16	16	96	(104)
46	58	24M	14	10	0	16	16	16	16	16	104	(112)
46	66	24M	14	10	0	24	16	16	16	16	112	(120)
46	74	24M	14	10	0	32	16	16	16	16	120	(128)
46	82	24M	14	10	0	40	16	16	16	16	128	(136)
46	90	24M	14	10	0	48	16	16	16	16	136	(144)
46	106	24M	14	10	0	64	16	16	16	16	152	(160)
52	24	60M	36	24	16	0					76	(80)
52	40	60M	36	24	0	0	16	16			92	(96)
52	40	60M	36	24	16	16					92	(96)
52	48	60M	36	24	0	8	16	16			100	(104)
52	56	60M	36	24	0	16	16	16			108	(112)
52	56	60M	36	24	16	32					108	(112)
52	64	60M	36	24	0	24	16	16			116	(120)
52	72	60M	36	24	0	32	16	16			124	(128)
52	80	60M	36	24	0	40	16	16			132	(136)
52	88	60M	36	24	0	48	16	16			140	(144)
52	104	60M	36	24	0	64	16	16			156	(160)

MELSEC iQF

Number of I/O points		CPU module			Input/output module		Powered input/output module FX5-32E		Input/output module		I/O total (Total occupied)	
Input	Output	Module model	Input	Output	Input	Output	Input	Output	Input	Output		
56	16	40M	24	16	32	0					72	
56	32	40M	24	16	16	0	16	16			88	
56	32	40M	24	16	32	16					88	
56	40	40M	24	16	32	24					96	
56	48	40M	24	16	0	0	16	16	16	16	104	
56	48	40M	24	16	16	16	16	16			104	
56	56	40M	24	16	0	8	16	16	16	16	112	
56	64	40M	24	16	0	16	16	16	16	16	120	
56	64	40M	24	16	16	32	16	16			120	
56	72	40M	24	16	0	24	16	16	16	16	128	
56	80	40M	24	16	0	32	16	16	16	16	136	
56	88	40M	24	16	0	40	16	16	16	16	144	
56	96	40M	24	16	0	48	16	16	16	16	152	
56	112	40M	24	16	0	64	16	16	16	16	168	
68	24	60M	36	24	32	0					92	(96)
68	40	60M	36	24	16	0	16	16			108	(112)
68	40	60M	36	24	32	16					108	(112)
68	56	60M	36	24	0	0	16	16	16	16	124	(128)
68	56	60M	36	24	16	16	16	16			124	(128)
68	64	60M	36	24	0	8	16	16	16	16	132	(136)
68	72	60M	36	24	0	16	16	16	16	16	140	(144)
68	72	60M	36	24	16	32	16	16			140	(144)
68	80	60M	36	24	0	24	16	16	16	16	148	(152)
68	88	60M	36	24	0	32	16	16	16	16	156	(160)
68	96	60M	36	24	0	40	16	16	16	16	164	(168)
68	104	60M	36	24	0	48	16	16	16	16	172	(176)
68	120	60M	36	24	0	64	16	16	16	16	188	(192)
72	16	40M	24	16	48	0					88	
72	32	40M	24	16	32	0	16	16			104	
72	32	40M	24	16	48	16					104	
72	48	40M	24	16	32	16	16	16			120	
72	56	40M	24	16	32	24	16	16			128	
72	64	40M	24	16	16	16	16	16	16	16	136	
84	24	60M	36	24	48	0					108	(112)
84	40	60M	36	24	32	0	16	16			124	(128)
84	40	60M	36	24	48	16					124	(128)
84	56	60M	36	24	32	16	16	16			140	(144)

Number of I/O points		CPU module			Input/output module		Powered input/output module FX5-32E		Input/output module		IO total Total occupied)	
Input	Output	Module model	Input	Output	Input	Output	Input	Output	Input	Output		
88	16	40M	24	16	64	0					104	
88	32	40M	24	16	48	0	16	16			120	
88	40	40M	24	16	16	0	16	16	32	8	128	
88	48	40M	24	16	48	16	16	16			136	
88	56	40M	24	16	16	16	16	16	32	8	144	
88	72	40M	24	16	16	32	16	16	32	8	160	
100	24	60M	36	24	64	0					124	(128)
100	40	60M	36	24	48	0	16	16			140	(144)
100	48	60M	36	24	16	0	16	16	32	8	148	(152)
100	56	60M	36	24	48	16	16	16			156	(160)
100	64	60M	36	24	16	16	16	16	32	8	164	(168)
100	80	60M	36	24	16	32	16	16	32	8	180	(184)
104	32	40M	24	16	64	0	16	16			136	
104	40	40M	24	16	32	0	16	16	32	8	144	
104	56	40M	24	16	32	16	16	16	32	8	160	
104	64	40M	24	16	32	24	16	16	32	8	168	
116	40	60M	36	24	64	0	16	16			156	(160)
116	48	60M	36	24	32	0	16	16	32	8	164	(168)
116	64	60M	36	24	32	16	16	16	32	8	180	(184)
120	40	40M	24	16	48	0	16	16	32	8	160	
120	56	40M	24	16	48	16	16	16	32	8	176	
132	48	60M	36	24	48	0	16	16	32	8	180	(184)
132	64	60M	36	24	48	16	16	16	32	8	196	(200)
148	48	60M	36	24	64	0	16	16	32	8	196	(200)

Examples of combinations of FX5U inputs/outputs

The table below shows examples of combinations of FX5U extension modules. The contents of combinations can be described based on the number of input points.

- In addition to the combinations shown below, various combinations can be made by changing selected I/O modules and extension modules.

Number of VO points		CPU module			Input/output module		Powered input/output module FX5-32E		Input/output module		$\begin{aligned} & \text { VO } \\ & \text { total } \end{aligned}$
Input	Output	Module model	Input	Output	Input	Output	Input	Output	Input	Output	
16	16	32 M	16	16							32
16	24	32M	16	16	0	8					40
16	32	32M	16	16	0	16					48
16	40	32 M	16	16	0	24					56
16	48	32 M	16	16	0	32					64
16	64	32 M	16	16	0	48					80
24	16	32 M	16	16	8	0					40
24	24	32 M	16	16	8	8					48
24	32	32 M	16	16	8	16					56
24	40	32M	16	16	8	24					64
32	16	32 M	16	16	16	0					48
32	32	32M	16	16	16	16					64
32	32	32M	16	16	0	0	16	16			64
32	32	64M	32	32							64
32	40	32M	16	16	0	8	16	16			72
32	40	64M	32	32	0	8					72
32	48	32M	16	16	0	16	16	16			80
32	48	64M	32	32	0	16					80
32	56	32M	16	16	0	24	16	16			88
32	56	64M	32	32	0	24					88
32	64	64M	32	32	0	32					96
32	80	64M	32	32	0	48					112
32	80	64M	32	32	0	48					112
32	80	64M	32	32	0	48					112
40	16	32 M	16	16	24	0					56
40	24	32M	16	16	24	8					64
40	32	32M	16	16	8	0	16	16			72
40	40	32 M	16	16	8	8	16	16			80
40	40	80M	40	40							80
40	56	80M	40	40	0	16					96
40	72	80M	40	40	0	32					112
40	88	80M	40	40	0	48					128
48	16	32 M	16	16	32	0					64
48	32	32 M	16	16	16	0	16	16			80
48	32	64M	32	32	16	0					80
48	48	32M	16	16	16	16	16	16			96
48	48	64M	32	32	16	16					96
48	48	64M	32	32	0	0	16	16			96
48	64	64M	32	32	16	32					112
48	64	64M	32	32	0	16	16	16			112
48	80	64M	32	32	0	32	16	16			128
48	96	64M	32	32	0	48	16	16			144

Number of I/O points		CPU module			Input/output module		Powered input/output module FX5-32E		Input/output module		$\begin{aligned} & \text { VO } \\ & \text { total } \end{aligned}$
Input	Output	Module model	Input	Output	Input	Output	Input	Output	Input	Output	
56	32	32M	16	16	24	0	16	16			88
56	40	32M	16	16	24	8	16	16			96
56	40	80M	40	40	16	0					96
56	56	80M	40	40	16	16					112
56	56	80M	40	40	0	0	16	16			112
56	72	80M	40	40	16	32					128
56	72	80M	40	40	0	16	16	16			128
56	88	80M	40	40	0	32	16	16			144
56	104	80M	40	40	0	48	16	16			160
64	32	32M	16	16	32	0	16	16			96
64	32	64M	32	32	32	0					96
64	48	32 M	16	16	0	0	16	16	32	16	112
64	48	64M	32	32	16	0	16	16			112
64	48	64M	32	32	32	16					112
64	56	32M	16	16	0	8	16	16	32	16	120
64	56	64M	32	32	32	24					120
64	64	32 M	16	16	0	16	16	16	32	16	128
64	64	64M	32	32	16	16	16	16			128
64	72	32 M	16	16	0	24	16	16	32	16	136
64	80	64M	32	32	16	32	16	16			144
72	40	80M	40	40	32	0					112
72	48	32M	16	16	8	0	16	16	32	16	120
72	56	32 M	16	16	8	8	16	16	32	16	128
72	56	80M	40	40	32	16					128
72	56	80M	40	40	16	0	16	16			128
72	64	80M	40	40	32	24					136
72	72	80M	40	40	16	16	16	16			144
72	88	80M	40	40	16	32	16	16			160
80	32	64M	32	32	48	0					112
80	48	32M	16	16	16	0	16	16	32	16	128
80	48	64M	32	32	48	16					128
80	48	64M	32	32	32	0	16	16			128
80	64	32M	16	16	16	16	16	16	32	16	144
80	64	64M	32	32	32	16	16	16			144
80	72	64M	32	32	32	24	16	16			152
80	80	64M	32	32	0	16	16	16	32	16	160
80	96	64M	32	32	0	32	16	16	32	16	176
80	112	64M	32	32	0	48	16	16	32	16	192

MELSEC iQ-F

Number of VO points		CPU module			Input/output module		Powered input/output module FX5-32E		Input/output module		I/O total
Input	Output	Module model	Input	Output	Input	Output	Input	Output	Input	Output	
88	40	80M	40	40	48	0					128
88	48	32M	16	16	24	0	16	16	32	16	136
88	56	32M	16	16	24	8	16	16	32	16	144
88	56	80M	40	40	48	16					144
88	56	80M	40	40	32	0	16	16			144
88	64	32 M	16	16	24	8	16	16	32	24	152
88	72	80M	40	40	32	16	16	16			160
88	80	80M	40	40	32	24	16	16			168
88	88	80M	40	40	0	16	16	16	32	16	176
88	104	80M	40	40	0	32	16	16	32	16	192
88	120	80M	40	40	0	48	16	16	32	16	208
96	32	64M	32	32	64	0					128
96	48	32M	16	16	32	0	16	16	32	16	144
96	48	64M	32	32	48	0	16	16			144
96	56	32M	16	16	32	0	16	16	32	24	152
96	64	64M	32	32	48	16	16	16			160
96	64	64M	32	32	16	0	16	16	32	16	160
96	80	64M	32	32	16	16	16	16	32	16	176
96	96	64M	32	32	16	32	16	16	32	16	192
104	40	80M	40	40	64	0					144
104	56	80M	40	40	48	0	16	16			160
104	72	80M	40	40	48	16	16	16			176
104	72	80M	40	40	16	0	16	16	32	16	176
104	88	80M	40	40	16	16	16	16	32	16	192
104	104	80M	40	40	16	32	16	16	32	16	208
112	48	64M	32	32	64	0	16	16			160
112	64	64M	32	32	32	0	16	16	32	16	176
112	80	64M	32	32	32	16	16	16	32	16	192
112	88	64M	32	32	32	24	16	16	32	16	200
120	56	80M	40	40	64	0	16	16			176
120	72	80M	40	40	32	0	16	16	32	16	192
120	88	80M	40	40	32	16	16	16	32	16	208
120	96	80M	40	40	32	24	16	16	32	16	216
128	64	64M	32	32	48	0	16	16	32	16	192
128	80	64M	32	32	48	16	16	16	32	16	208
128	88	64M	32	32	48	16	16	16	32	24	216
136	72	80M	40	40	48	0	16	16	32	16	208
136	88	80M	40	40	48	16	16	16	32	16	224
136	96	80M	40	40	48	16	16	16	32	24	232

Number of I/O points		CPU module			Input/output module		Powered input/output module FX5-32E		Input/output module		I/O total
Input	Output	Module model	Input	Output	Input	Output	Input	Output	Input	Output	
144	64	64M	32	32	64	0	16	16	32	16	208
144	72	64M	32	32	64	0	16	16	32	24	216
144	80	64M	32	32	64	0	16	16	32	32	224
152	72	80M	40	40	64	0	16	16	32	16	224
152	80	80M	40	40	64	0	16	16	32	24	232

Examples of combinations of FX5UC inputs/outputs

The table below shows examples of combinations of FX5UC extension modules. The contents of combinations can be described based on the number of input points.

- In addition to the combinations shown below, various combinations can be made by changing selected I/O modules and extension modules.

Number of I/O points		CPU module			Input/output module		Connector conversion module	Input/output module		I/O total
Input	Output	Module model	Input	Output	Input	Output		Input	Output	
16	16	32 M	16	16	0	0				32
16	24	32M	16	16	0	0	-		8	40
16	32	32 M	16	16	0	16				48
16	48	32M	16	16	0	32				64
24	16	32 M	16	16	0	0	-	8		40
24	48	32 M	16	16	0	32	\bullet	8		72
24	64	32M	16	16	0	48	-	8		88
24	80	32 M	16	16	0	64	-	8		104
32	16	32M	16	16	16	0				48
32	32	32M	16	16	16	16				64
32	32	64M	32	32	0	0				64
32	48	32 M	16	16	16	32				80
32	48	64M	32	32	0	16				80
32	64	64M	32	32	0	32				96
32	72	32M	16	16	16	48	-		8	104
32	80	64 M	32	32	0	48				112
40	16	32 M	16	16	16	0	-	8		56
40	32	32M	16	16	16	16	\bullet	8		72
40	32	64M	32	32	0	0	-	8		72
40	48	32M	16	16	16	32	\bullet	8		88
40	64	64M	32	32	0	32	-	8		104
48	16	32M	16	16	32	0				64
48	32	64 M	32	32	16	0				80
48	32	32M	16	16	32	16				80
48	48	32 M	16	16	32	32				96
48	48	64M	32	32	16	16				96
48	48	96M	48	48	0	0				96
48	64	96M	48	48	0	16				112
48	64	64M	32	32	16	32				112
48	80	96M	48	48	0	32				128
56	32	32M	16	16	32	16	\bullet	8		88
56	48	32 M	16	16	32	32	\bullet	8		104
56	48	64M	32	32	16	16	\bullet	8		104
56	48	96M	48	48	0	0	\bullet	8		104
56	64	32M	16	16	32	48	\bullet	8		120
56	64	64M	32	32	16	32	\bullet	8		120
56	64	96M	48	48	0	16	\bullet	8		120
56	80	64M	32	32	16	48	\bullet	8		136
56	96	96M	48	48	0	48	\bullet	8		152
64	32	32M	16	16	48	16				96
64	48	64M	32	32	32	16				112
64	64	32M	16	16	48	48				128
64	64	96M	48	48	16	16				128
64	80	64M	32	32	32	48				144
64	96	96M	48	48	16	48				160

Number of I/O points		CPU module			Input/output module		Connectior conversion module	Input/output module		$\left\lvert\, \begin{array}{l\|l\|} 1 / 0 \\ \text { total } \end{array}\right.$
Input	Output	Module model	Input	Output	Input	Output		Input	Output	
72	32	32M	16	16	48	16	\bullet	8		104
72	48	64M	32	32	32	16	\bullet	8		120
72	64	32M	16	16	48	48	\bullet	8		136
72	64	96M	48	48	16	16	\bullet	8		136
72	64	64M	32	32	32	32	\bullet	8		136
72	80	32M	16	16	48	64	\bullet	8		152
72	80	64M	32	32	32	48	\bullet	8		152
72	96	96M	48	48	16	48	-	8		168
80	32	64M	32	32	48	0				112
80	48	64M	32	32	48	16				128
80	48	32M	16	16	64	32				128
80	64	32M	16	16	64	48				144
80	64	96M	48	48	32	16				144
80	80	64M	32	32	48	48				160
80	80	32 M	16	16	64	64				160
80	96	64M	32	32	48	64				176
80	96	96M	48	48	32	48				176
88	48	32 M	16	16	64	32	\bullet	8		136
88	48	64M	32	32	48	16	\bullet	8		136
88	64	96M	48	48	32	16	\bullet	8		152
88	64	32M	16	16	64	48	\bullet	8		152
88	80	64M	32	32	48	48	\bullet	8		168
88	80	96M	48	48	32	32	\bullet	8		168
88	96	64M	32	32	48	64	\bullet	8		184
88	112	64M	32	32	48	80	\bullet	8		200
88	112	96M	48	48	32	64	\bullet	8		200
88	128	96M	48	48	32	80	\bullet	8		216
96	32	64M	32	32	64	0				128
96	48	96M	48	48	48	0				144
96	48	32M	16	16	80	32				144
96	64	32M	16	16	80	48				160
96	80	64M	32	32	64	48				176
96	96	32M	16	16	80	80				192
96	112	64M	32	32	64	80				208
96	112	96M	48	48	48	64				208
96	128	96M	48	48	48	80				224
96	144	96M	48	48	48	96				240
104	32	32M	16	16	80	16	-	8		136
104	48	96M	48	48	48	0	\bullet	8		152
104	48	32M	16	16	80	32	\bullet	8		152
104	48	64M	32	32	64	16	\bullet	8		152
104	64	32M	16	16	80	48	\bullet	8		168
104	64	64M	32	32	64	32	\bullet	8		168
104	96	64M	32	32	64	64	\bullet	8		200
104	112	96M	48	48	48	64	\bullet	8		216
104	112	64M	32	32	64	80	\bullet	8		216
104	128	96M	48	48	48	80	\bullet	8		232

MELSEC iQ-F

Number of I/O points		CPU module			Input/output module		Connector conversion module	Input/output module		1/0 total
Input	Output	Module model	Input	Output	Input	Output		Input	Output	
112	64	64M	32	32	80	32				176
112	80	96M	48	48	64	32				192
112	96	32M	16	16	96	80				208
112	112	64M	32	32	80	80				224
112	112	96M	48	48	64	64				224
112	128	32M	16	16	96	112				240
112	128	64M	32	32	80	96				240
112	144	96M	48	48	64	96				256
120	64	32M	16	16	96	48	\bullet	8		184
120	80	64M	32	32	80	48	\bullet	8		200
120	96	96M	48	48	64	48	\bullet	8		216
120	112	32M	16	16	96	96	\bullet	8		232
120	112	64M	32	32	80	80	\bullet	8		232
120	128	96M	48	48	64	80	\bullet	8		248
120	128	64M	32	32	80	96	-	8		248
120	136	96M	48	48	64	80	\bullet	8	8	256
128	64	32M	16	16	112	48				192
128	96	96M	48	48	80	48				224
128	96	32 M	16	16	112	80				224
128	96	64M	32	32	96	64				224
128	112	96M	48	48	80	64				240
128	112	64 M	32	32	96	80				240
128	128	96M	48	48	80	80				256
136	48	32M	16	16	112	32	\bullet	8		184
136	80	64 M	32	32	96	48	\bullet	8		216
136	96	96M	48	48	80	48	\bullet	8		232
136	96	64M	32	32	96	64	\bullet	8		232
136	112	64M	32	32	96	80	\bullet	8		248
136	120	96M	48	48	80	64	\bullet	8	8	256
144	64	32M	16	16	128	48				208
144	80	64M	32	32	112	48				224
144	96	96M	48	48	96	48				240
144	112	64M	32	32	112	80				256
144	112	96M	48	48	96	64				256
152	64	32M	16	16	128	48	\bullet	8		216
152	64	64M	32	32	112	32	\bullet	8		216
152	96	96M	48	48	96	48	\bullet	8		248
152	96	64M	32	32	112	64	\bullet	8		248
152	104	96M	48	48	96	48	\bullet	8	8	256
160	64	64M	32	32	128	32				224
160	80	96M	48	48	112	32				240
160	96	64M	32	32	128	64				256
160	96	96M	48	48	112	48				256
168	64	64M	32	32	128	32	\bullet	8		232
168	80	96M	48	48	112	32	\bullet	8		248
168	80	64M	32	32	128	48	\bullet	8		248
168	88	96M	48	48	112	32	\bullet	8	8	256

Number of I/O points		CPU module			Input/output module		Connector conversion module	Input/output module		$\begin{aligned} & \text { l/O } \\ & \text { total } \end{aligned}$
Input	Output	Module model	Input	Output	Input	Output		Input	Output	
176	64	64M	32	32	144	32				240
176	64	96M	48	48	128	16				240
176	80	64M	32	32	144	48				256
184	64	96M	48	48	128	16	\bullet	8		248
184	64	64M	32	32	144	32	\bullet	8		248
184	72	96M	48	48	128	16	-	8	8	256
192	48	64M	32	32	160	16				240
192	56	96M	48	48	144	0	-		8	248
192	64	96M	48	48	144	16				256
200	32	64M	32	32	160	0	\bullet	8		232
200	48	96M	48	48	144	0	\bullet	8		248
200	56	96M	48	48	144	0	-	8	8	256
208	48	96M	48	48	160	0				256

I/O Module
memo

Input/Output Devices for Voltage and Current

Analog input/output devices can be used to input and output analog amount of voltage, current, etc.
Analog control essential for FA control can easily be implemented by the PLC.
(For supporting micro voltage input of 0 to 10 mV DC, 0 to 100 mV DC, refer to FX5-4LC for "Input device for temperature sensor".)

List of analog input/output devices

Analog input/output expansion adapter

Model (Number of channels)	Input specifications			Isolation method	Compatible CPU module				Analog input points
	Item	Input current	Input voltage		FX5S	FX5UJ	FX5U	FX5UC	
FX5-4A-ADP (Input: $2 \mathrm{ch} /$ Output: 2 ch)	Input range	-20 to +20 mA DC (Input resistance 250Ω)	-10 to +10 V DC (Input resistance $1 \mathrm{M} \Omega$)	Between input terminal and PLC: Photocoupler Between input channels: Non-isolation	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	Resolution	$1.25 \mu \mathrm{~A}(0$ to 20 mA$)$ $1.25 \mu \mathrm{~A}(4$ to 20 mA) $2.5 \mu \mathrm{~A}(-20$ to $+20 \mathrm{~mA})$	$625 \mu \mathrm{~V}$ (0 to 10 V) $312.5 \mu \mathrm{~V}(0$ to 5 V$)$ $312.5 \mu \mathrm{~V}(1$ to 5 V$)$ $1250 \mu \mathrm{~V}(-10$ to $+10 \mathrm{~V})$						2 points (2 ch)
	Output specifications			Isolation method					Analog
	Items	Output current	Output voliage						output points
	Output range	0 to 20 mADC (External load resistance value 0 to 500Ω)	-10 to +10 V DC (External load resistance value $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)	Between output terminal and PLC: Photocoupler Between output channels: Non-isolation					$\begin{aligned} & 2 \text { points } \\ & \text { (2 ch) } \end{aligned}$
	Resolution	$1.25 \mu \mathrm{~A}(0$ to 20 mA$)$ $1 \mu \mathrm{~A}(4$ to 20 mA$)$	$\begin{aligned} & 625 \mu \mathrm{~V}(0 \text { to } 10 \mathrm{~V}) \\ & 312.5 \mu \mathrm{~V}(0 \text { to } 5 \mathrm{~V}) \\ & 250 \mu \mathrm{~V}(1 \text { to } 5 \mathrm{~V}) \\ & 1250 \mu \mathrm{~V}(-10 \text { to }+10 \mathrm{~V}) \end{aligned}$						

Analog input expansion adapter (A/D conversion)

Model (Number of channels)	Input specifications			Isolation method	Compatible CPU module				Analog input points
	Item	Input current	Input volitage		FX5S	FX5UJ	FX5U	FX5UC	
FX5-4AD-ADP (4 ch)	Input range	$\begin{array}{\|l\|} \hline-20 \text { to }+20 \mathrm{~mA} \mathrm{DC} \\ \text { (Input resistance } 250 \Omega \text {) } \\ \hline \end{array}$	-10 to +10 V DC (Input resistance $1 \mathrm{M} \Omega$)	Between input terminal and PLC: Photocoupler Between input channels: Non-isolation	\bigcirc	\bigcirc	\bigcirc	\bigcirc	4 points (4 ch)
	Resolution	$1.25 \mu \mathrm{~A}(0$ to 20 mA) $1.25 \mu \mathrm{~A}(4$ to 20 mA$)$ $2.5 \mu \mathrm{~A}(-20$ to $+20 \mathrm{~mA})$	$625 \mu \mathrm{~V}$ (0 to 10 V) $312.5 \mu \mathrm{~V}$ (0 to 5 V) $312.5 \mu \mathrm{~V}$ (1 to 5 V) $1250 \mu \mathrm{~V}(-10$ to $+10 \mathrm{~V})$						

Analog output expansion adapter (D/A conversion)

Model (Number of channels)	Output specifications			Isolation method	Compatible CPU module				Analog output points
	Items	Output current	Output voltage		FX5S	FX5UJ	FX5U	FX5UC	
FX5-4DA-ADP (4 ch)	Output range	0 to 20 mA DC (External load resistance value 0 to 500Ω)	-10 to +10 V DC (External load resistance value $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)	Between output terminal and PLC: Photocoupler Between output channels: Non-isolation	\bigcirc	\bigcirc	\bigcirc	\bigcirc	4 points (4 ch)
	Resolution	$\begin{aligned} & 1.25 \mu \mathrm{~A}(0 \text { to } 20 \mathrm{~mA}) \\ & 1 \mu \mathrm{~A}(4 \text { to } 20 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 625 \mu \mathrm{~V}(0 \text { to } 10 \mathrm{~V}) \\ & 312.5 \mu \mathrm{~V}(0 \text { to } 5 \mathrm{~V}) \\ & 250 \mu \mathrm{~V}(1 \text { to } 5 \mathrm{~V}) \\ & 1250 \mu \mathrm{~V}(-10 \text { to }+10 \mathrm{~V}) \end{aligned}$						

Analog input module (A/D conversion)

Model (Number of channels)	Input specifications			Isolation method	Compatible CPU module				Analog input points
	Items	Input current	Input voltage		FX5S	FX5UJ	FX5U	FX5UC	
FX5-4AD (4 ch)	Input range	-20 to +20 mA DC (Input resistance 250Ω)	$\begin{array}{\|l} -10 \mathrm{to}+10 \mathrm{~V} \text { DC } \\ \text { (Input resistance } 400 \mathrm{k} \Omega \text { or } \\ \text { more) } \end{array}$	Between input terminal and PLC: Photocoupler Between input terminal channels: Non-isolation	\times	\bigcirc	\bigcirc	O*2	4 points (4 ch)
	Resolution	$\begin{aligned} & 625 \mathrm{nA}(0 \text { to } 20 \mathrm{~mA}) \\ & 500 \mathrm{nA}(4 \text { to } 20 \mathrm{~mA}) \\ & 625 \mathrm{nA}(-20 \text { to }+20 \mathrm{~mA}) \\ & 500 \mathrm{nA} \mathrm{~A}^{* 1} \\ & \text { (User range setting) } \end{aligned}$	$\begin{aligned} & 312.5 \mu \mathrm{~V}(0 \text { to } 10 \mathrm{~V}) \\ & 156.25 \mu \mathrm{~V}(0 \text { to } 5 \mathrm{~V}) \\ & 125 \mu \mathrm{~V}(1 \text { to } 5 \mathrm{~V}) \\ & 312.5 \mu \mathrm{~V}(-10 \text { to }+10 \mathrm{~V}) \\ & 125 \mu \mathrm{~V} \text { *1 } \\ & \text { (User range setting) } \end{aligned}$						
FX5-8AD (8 ch)	Input range	-20 to +20 mA DC (Input resistance 250Ω)	$\begin{aligned} & -10 \text { to }+10 \mathrm{~V} \text { DC } \\ & \text { (Input resistance } 1 \mathrm{M} \Omega \text {) } \end{aligned}$	Between input terminal and PLC: Photocoupler Between input terminal channels: Non-isolation	\times	\bigcirc	\bigcirc	O*2	8 points (8 ch)
	Resolution	$625 \mathrm{nA}(0$ to 20 mA$)$ $500 \mathrm{nA}(4$ to 20 mA$)$ $625 \mathrm{nA}(-20$ to $+20 \mathrm{~mA})$	$\begin{aligned} & 312.5 \mu \mathrm{~V}(0 \text { to } 10 \mathrm{~V}) \\ & 156.25 \mu \mathrm{~V}(0 \text { to } 5 \mathrm{~V}) \\ & 125 \mu \mathrm{~V} \text { (1 to } 5 \mathrm{~V}) \\ & 312.5 \mu \mathrm{~V}(-10 \text { to }+10 \mathrm{~V}) \\ & \hline \end{aligned}$						
FX3U-4AD (4 ch)	Input range	-20 to $+20 \mathrm{~mA} \mathrm{DC}$, 4 to 20 mA DC (Input resistance 250Ω)	$\begin{aligned} & -10 \text { to }+10 \text { V DC } \\ & \text { (Input resistance } 200 \mathrm{k} \Omega \text {) } \end{aligned}$	Between input terminal and PLC: Photocoupler Between input channels: Non-isolation	\times	\times	O*3	O*3	4 points (4 ch)
	Resolution	$1.25 \mu \mathrm{~A}(-20$ to $+20 \mathrm{~mA})$	$0.32 \mathrm{mV}(-10$ to $+10 \mathrm{~V})$						

*1: Maximum resolution in the user range setting
*2: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
*3: Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).

Analog output module (D/A conversion)

Model (Number of channels)	Output specifications			Isolation method	Compatible CPU module				Analog output points
	Items	Output current	Output voltage		FX5S	FX5UJ	FX5U	FX5UC	
FX5-4DA (4 ch)	Output range	0 to 20 mA DC (External load resistance value 0 to 500Ω)	-10 to +10 V DC (External load resistance value $1 \mathrm{k} \Omega$ to1 $\mathrm{M} \Omega$)	Between output terminal and PLC: Photocoupler Between output channels: Non-isolation	\times	\bigcirc	\bigcirc	O*2	4 points (4 ch)
	Resolution	$\begin{aligned} & 625 \mathrm{nA}(0 \text { to } 20 \mathrm{~mA}) \\ & 500 \mathrm{nA}(4 \text { to } 20 \mathrm{~mA}) \\ & 500 \mathrm{nA} A^{* 1} \\ & \text { (User range setting) } \end{aligned}$	$\begin{aligned} & 312.5 \mu \mathrm{~V}(0 \text { to } 10 \mathrm{~V}) \\ & 156.25 \mu \mathrm{~V}(0 \text { to } 5 \mathrm{~V}) \\ & 125 \mu \mathrm{~V}(1 \text { to } 5 \mathrm{~V}) \\ & 312.5 \mu \mathrm{~V}(-10 \text { to }+10 \mathrm{~V}) \\ & 312.5 \mu \mathrm{~V}^{* 1} \\ & \text { (User range setting) } \\ & \hline \end{aligned}$						
FX3U-4DA (4 ch)	Output range	0 to 20 mADC , 4 to 20 mADC (External load resistance value 500Ω or less)	-10 to +10 V DC (external load resistance value $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)	Between output terminal and PLC: Photocoupler Between output channels: Non-isolation	\times	\times	○*3	O*3	4 points (4 ch)
	Resolution	$0.63 \mu \mathrm{~A}(0$ to 20 mA$)$	$0.32 \mathrm{mV}(-10$ to $+10 \mathrm{~V})$						

*1: Maximum resolution in the user range setting.

* 2: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
*3: Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).

FX5U CPU module

Built-in analog input

Model (Number of channels)	Input specifications		Isolation method
	ltems	Input voltage	
FX5U CPU module (2 ch)	Input range	0 to 10 V DC (Input resistance $115.7 \mathrm{k} \Omega$)	Between analog input circuit and PLC circuit: Non-isolation Between input channels: Non-isolation
	Resolution	2.5 mV	

Built-in analog output

Model (Number of channels)	Output specifications		Isolation method
	Items	Output voliage	
FX5U CPU module (1 ch)	Output range	0 to 10 V DC (External load resistance value $2 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)	Between analog input circuit and PLC circuit: Non-isolation
	Resolution	2.5 mV	

Features

1) Expansion adapter for adding 2-channel analog input and 2-channel analog output.
2) High-precision input/analog output adapter with resolution of 14 bits binary.
3) 2-channel analog input (voltage input: - 10 to +10 V DC or current input: -20 to +20 mA DC) and 2-channel analog output (voltage output: -10 to +10 V DC or current output: 0 to 20 mA DC) are allowed.
4) Voltage or current input can be specified for each channel.
5) Data can be transferred programless (no dedicated instructions).
\checkmark Specifications

Items		Specifications			
	Analog input points	2 points (2 channels)			
	Analog input voltage	-10 to +10 V DC (input resistance 1 M)			
	Analog input current	-20 to +20 mA DC (input resistance 250Ω)			
	Digital output value	14-bit binary value			
	Input characteristics, resolution*1	Analog input range		Digital output value	Resolution
		Voltage	0 to 10 V	0 to 16000	625 V
			0 to 5 V	0 to 16000	$312.5 \mu \mathrm{~V}$
			1 to 5 V	0 to 12800	$312.5 \mu \mathrm{~V}$
			-10 to +10 V	-8000 to +8000	1250 V
		Current	0 to 20 mA	0 to 16000	$1.25 \mu \mathrm{~A}$
			4 to 20 mA	0 to 12800	$1.25 \mu \mathrm{~A}$
			-20 to +20 mA	-8000 to +8000	$2.5 \mu \mathrm{~A}$
	Accuracy (Accuracy in respect to full-scale digital output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: within $\pm 0.1 \%$ (± 16 digits*2) Ambient temperature 0 to $55^{\circ} \mathrm{C}$: within $\pm 0.2 \%$ (± 32 digits*2) Ambient temperature -20 to $0^{\circ} \mathrm{C}$: within $\pm 0.3 \%$ (± 48 digits*2)			
$\begin{aligned} & \ddagger \\ & \vdots \\ & \frac{0}{0} \\ & \varrho \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	Analog output points	2 points (2 channels)			
	Digital input	14-bit binary value			
	Analog output voltage	-10 to +10 V DC (external load resistance value $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)			
	Analog output current	0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(external} \mathrm{load} \mathrm{resistance} \mathrm{value} 0$ to 500Ω)			
	Output characteristics, resolution*1	Analog output range		Digital value	Resolution
		Voltage	0 to 10 V	0 to 16000	$625 \mu \mathrm{~V}$
			0 to 5 V	0 to 16000	$312.5 \mu \mathrm{~V}$
			1 to 5 V	0 to 16000	$250 \mu \mathrm{~V}$
			-10 to +10 V	-8000 to +8000	$1250 \mu \mathrm{~V}$
		Current	0 to 20 mA	0 to 16000	$1.25 \mu \mathrm{~A}$
			4 to 20 mA	0 to 16000	$1 \mu \mathrm{~A}$
	Accuracy (Accuracy in respect to full-scale analog output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}: \pm 0.1 \%$ (Voltage $\pm 20 \mathrm{mV}$, Current $\pm 20 \mu \mathrm{~A}$) Ambient temperature 0 to $55^{\circ} \mathrm{C}: \pm 0.2 \%$ (Voltage $\pm 40 \mathrm{mV}$, Current $\pm 40 \mu \mathrm{~A}$) Ambient temperature -20 to $0^{\circ} \mathrm{C}: \pm 0.3 \%$ (Voltage $\pm 60 \mathrm{mV}$, Current $\pm 60 \mu \mathrm{~A}$)			
	olute maximum input	Voltage: $\pm 15 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$			
	version speed	FX5S CPU module: Maximum 2.2 ms (The data will be updated at every scan time of the PLC.) FX5UJ/FX5U/FX5UC CPU module: Maximum 2.0 ms (The data will be updated at every scan time of the PLC.)			
	ation method	Between input terminal and PLC: Photocoupler Between input channels: Non-isolation			
	ver supply	24 V DC +20\%, -15\% 100 mA (external power supply)*3 5 V DC, 10 mA (internal power supply)*3			
	mpatible CPU module	FX5S: Compatible from initial product FX5UJ: Ver. 1.010 or later FX5U, FX5UC: Ver. 1.240 or later			
	mber of occupied input/ put points	0 points (no occupied points)			
	mber of connectable dules	FX5S, FX5U, FX5UC CPU module: Up to 4 modules to the left side of CPU module*4, FX5UJ CPU module: Up to 2 modules to the left side of CPU module			
	rnal dimensions $\mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$17.6 \times 106 \times 89.1$			
	SS (Weight): kg	Approx. 0.1			

*1: For details on the input conversion and output conversion characteristics, refer to the manual.
*2: Digit refers to digital values.
*3: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.
4: For FX5-4A-ADP with a serial number $223^{ * * *}$ or older, up to two modules can be connected in the entire system

FX5-4AD-ADP analog input expansion adapter

Features

1) High-precision analog input adapter with resolution of 14 bits binary.
2) 4-channel voltage input (-10 to +10 V DC) or current input (-20 to +20 mA DC) is allowed.
3) Voltage or current input can be specified for each channel.
4) Data can be transferred programless (no dedicated instructions).

Specifications

Items	Specifications			
Analog input points	4 points (4 channels)			
Analog input voltage	-10 to +10 V DC (input resistance 1 M)			
Analog input current	-20 to +20 mA DC (input resistance 250Ω)			
Digital output value	14-bit binary value			
Input characteristics, resolution*1		nalog input range	Digital output value	Resolution
	Voltage	0 to 10 V	0 to 16000	$625 \mu \mathrm{~V}$
		0 to 5 V	0 to 16000	$312.5 \mu \mathrm{~V}$
		1 to 5 V	0 to 12800	$312.5 \mu \mathrm{~V}$
		-10 to +10 V	-8000 to +8000	$1250 \mu \mathrm{~V}$
	Current	0 to 20 mA	0 to 16000	$1.25 \mu \mathrm{~A}$
		4 to 20 mA	0 to 12800	$1.25 \mu \mathrm{~A}$
		-20 to +20 mA	-8000 to +8000	$2.5 \mu \mathrm{~A}$
Accuracy (Accuracy in respect to full-scale digital output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}:$ within $\pm 0.1 \%\left(\pm 16\right.$ digits $\left.^{* 2}\right)$Ambient temperature 0 to $55^{\circ} \mathrm{C}:$ within $\pm 0.2 \%\left(\pm 32\right.$ digits $\left.{ }^{* 2}\right)$Ambient temperature -20 to $0^{\circ} \mathrm{C} * 3$: within $\pm 0.3 \%(\pm 48$ digits*2)			
Absolute maximum input	Voltage: $\pm 15 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$			
Conversion speed	FX5S CPU module: Maximum $500 \mu \mathrm{~s}$ (The data will be updated at every scan time of the PLC.) FX5UJ/FX5U/FX5UC CPU module: Maximum $450 \mu \mathrm{~s}$ (The data will be updated at every scan time of the PLC.)			
Isolation method	Between input terminal and PLC: Photocoupler Between input channels: Non-isolation			
Power supply	$24 \mathrm{VDC}, 20 \mathrm{~mA}$ (internal power supply)*4 $5 \mathrm{~V} D C, 10 \mathrm{~mA}$ (internal power supply)*4			
Compatible CPU module	FX5S, FX5UJ, FX5U, FX5UC: Compatible from initial product			
Number of occupied input/output points	0 points (no occupied points)			
Number of connectable modules	FX5S, FX5U, FX5UC: Up to 4 modules to the left side of CPU module, FX5UJ: Up to 2 modules to the left side of CPU module			
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$17.6 \times 106 \times 89.1$			
MASS (Weight): kg	Approx. 0.1			

*1: For the input conversion characteristics, refer to manuals of each product.
*2: Digit refers to digital values.
*3: Products manufactured earlier than June 2016 do not support this specification.

* 4: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

FX5-4DA-ADP analog output expansion adapter

Features

1) High-precision analog output adapter with resolution of 14 bits binary.
2) 4-channel voltage output (-10 to +10 V DC) or current output (0 to 20 mA DC) is allowed.
3) Voltage or current output can be specified for each channel.
4) Data can be transferred programless (no dedicated instructions).

\checkmark Specifications

Items	Specifications			
Analog output points	4 points (4 channels)			
Digital input	14-bit binary value			
Analog output voltage	-10 to +10 V DC (external load resistance value $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)			
Analog output current	0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(external} \mathrm{load} \mathrm{resistance} \mathrm{value} 0$ to 500Ω)			
Output characteristics, resolution*1		log output range	Digital value	Resolution
	Voltage	0 to 10 V	0 to 16000	$625 \mu \mathrm{~V}$
		0 to 5 V	0 to 16000	$312.5 \mu \mathrm{~V}$
		1 to 5 V	0 to 16000	250 V
		-10 to +10 V	-8000 to +8000	$1250 \mu \mathrm{~V}$
	Current	0 to 20 mA	0 to 16000	$1.25 \mu \mathrm{~A}$
		4 to 20 mA	0 to 16000	$1 \mu \mathrm{~A}$
Accuracy (Accuracy in respect to full-scale analog output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: within $\pm 0.1 \%$ (Voltage $\pm 20 \mathrm{mV}$, Current $\pm 20 \mu \mathrm{~A}$) Ambient temperature -20 to $55^{\circ} \mathrm{C}^{* 2}$: within $\pm 0.2 \%$ (Voltage $\pm 40 \mathrm{mV}$, Current $\pm 40 \mu \mathrm{~A}$)			
Conversion speed	FX5S CPU module: Maximum $1100 \mu \mathrm{~s}$ (The data will be updated at every scan time of the PLC.) FX5UJ/FX5U/FX5UC CPU module: Maximum $950 \mu \mathrm{~s}$ (The data will be updated at every scan time of the PLC.)			
Isolation method	Between output terminal and PLC: Photocoupler Between output channels: Non-isolation			
Power supply	24 V DC $+20 \%$, $-15 \% 160 \mathrm{~mA}$ (external power supply) $5 \mathrm{VDC}, 10 \mathrm{~mA}$ (internal power supply)*3			
Compatible CPU module	FX5S, FX5UJ, FX5U, FX5UC: Compatible from initial product			
Number of occupied input/output points	0 points (no occupied points)			
Number of connectable modules	FX5S, FX5U, FX5UC: Up to 4 modules to the left side of CPU module, FX5UJ: Up to 2 modules to the left side of CPU module			
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$17.6 \times 106 \times 89.1$			
MASS (Weight): kg	Approx. 0.1			

[^46]*2: The ambient temperature specification is 0 to $55^{\circ} \mathrm{C}$ for products manufactured earlier than June 2016.
*3: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

FX5-4AD analog input module

Features

1) High-precision analog input module with $312.5 \mu \mathrm{~V}$ at voltage input and 625 nA at current input.
2) Spring clamp terminal block type with excellent vibration resistance.
3) Data of 10,000 points can be logged for each channel and saved in buffer memory. Leaving logs will be useful for analyzing the cause of trouble.

Specifications

Items	Specifications			
Analog input points	4 points (4 channels)			
Analog input voltage	-10 to +10 V DC (Input resistance $400 \mathrm{k} \Omega$ or more)			
Analog input current	-20 to +20 mA DC (Input resistance 250Ω)			
Absolute maximum input	Voltage: $\pm 15 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$			
Digital output value	16-bit signed binary (-32768 to +32767)			
Input characteristics, resolution*1	Analog input range		Digital output value	Resolution
	Voltage	0 to 10 V	0 to 32000	$312.5 \mu \mathrm{~V}$
		0 to 5 V	0 to 32000	$156.25 \mu \mathrm{~V}$
		1 to 5 V	0 to 32000	$125 \mu \mathrm{~V}$
		-10 to +10 V	-32000 to +32000	$312.5 \mu \mathrm{~V}$
		User range setting	-32000 to +32000	$125 \mu \mathrm{~V} * 2$
	Current	0 to 20 mA	0 to 32000	625 nA
		4 to 20 mA	0 to 32000	500 nA
		-20 to +20 mA	-32000 to +32000	625 nA
		User range setting	-32000 to +32000	$500 \mathrm{nA*2}$
Accuracy (full scale digital output value accuracy)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: within $\pm 0.1 \%$ (± 64 digits*3) Ambient temperature 0 to $55^{\circ} \mathrm{C}$: within $\pm 0.2 \% ~(~ \pm 128$ digits*3) Ambient temperature -20 to $0^{\circ} \mathrm{C}$: within $\pm 0.3 \%$ (± 192 digits*3)			
Conversion speed	$80 \mu \mathrm{~s} / \mathrm{ch}$			
Isolation method	Between input terminal and PLC: Photocoupler Between input terminal channels: Non-isolation			
Power supply	5 V DC, 100 mA (internal power supply) $24 \mathrm{~V} \mathrm{DC}, 40 \mathrm{~mA}$ (internal power supply)			
Compatible CPU module	FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).			
Number of occupied l/O points	8 points (Either input or output is available for counting.)			
Number of connectable modules	FX5UJ: Up to 8 modules FX5U: Up to 16 modules FX5UC: Up to 15 modules			
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$40 \times 90 \times 102.2$			
MASS (Weight): kg	Approx. 0.2			

*1: For the input conversion characteristics, refer to manuals of each product
*2: Maximum resolution in the user range setting.
*3: Digit refers to digital values.

FX5-8AD multiple input module

Features

1) High precision multi input module with $312.5 \mu \mathrm{~V}$ at voltage input and 625 nA at current input.
2) Spring clamp terminal block type with excellent vibration resistance.
3) Data of 10,000 points can be logged for each channel and saved in buffer memory. Leaving logs will be useful for analyzing the cause of trouble.

\checkmark Specifications

Items	Specifications			
Analog input points	8 points (8 channels)			
Analog input voltage	-10 to 10 V DC (input resistance 1 M)			
Analog input current	-20 to +20 mA DC (input resistance 250Ω)			
Absolute maximum input	Voltage: $\pm 15 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$			
Input characteristics, resolution*1	Analog input range		Digital output value	Resolution
	Voltage	0 to 10 V	0 to 32000	$312.5 \mu \mathrm{~V}$
		0 to 5 V	0 to 32000	$156.25 \mu \mathrm{~V}$
		1 to 5 V	0 to 32000	125 M
		-10 to +10 V	-32000 to +32000	$312.5 \mu \mathrm{~V}$
	Current	0 to 20 mA	0 to 32000	625 nA
		4 to 20 mA	0 to 32000	500 nA
		-20 to +20 mA	-32000 to +32000	625 nA
Digital output value (16-bit signed binary value)	16-bit signed binary (-32000 to +32000)			
Accuracy (accuracy for the full scale digital output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: within $\pm 0.3 \%$ (± 192 digits*2) Ambient temperature -20 to $+55^{\circ} \mathrm{C}$: within $\pm 0.5 \%$ (± 320 digits*2)			
Conversion speed	$1 \mathrm{~ms} / \mathrm{ch}$			
Isolation method	Between input terminal and PLC: Photocoupler Between input terminal channels: Non-isolation			
Power supply	$24 \mathrm{VDC}, 40 \mathrm{~mA}$ (internal power supply) 24 V DC $+20 \%$, $-15 \% 100 \mathrm{~mA}$ (external power supply)			
Compatible CPU module	FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).			
Number of occupied I/O points	8 points (Either input or output is available for counting.)			
Number of connectable modules	FX5UJ: Up to 8 modules FX5U: Up to 16 modules FX5UC: Up to 15 modules			
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$50 \times 90 \times 102.2$			
MASS (Weight): kg	Approx. 0.3			

*1: For the input conversion characteristics, refer to manuals of each product.
$* 2$: Digit refers to digital values.

FX3U-4AD special function block for analog input

Features

1) High-precision analog input module with resolution of 15 bits binary
+1 -bit sign (voltage) and 14 bits binary +1 -bit sign (current).
2) 4-channel voltage input
(-10 to +10 V DC) or current input (-20 to $+20 \mathrm{~mA} \mathrm{DC}, 4$ to 20 mA DC) is allowed.
3) Voltage or current input can be specified for each channel.
4) High-speed AD conversion of 500 $\mu \mathrm{s} / \mathrm{ch}$ has been implemented.
5) Various functions such as digital filter function and peak value hold function have been provided.
\checkmark Specifications

Items	Input volitage	Input curent
Analog input range	$\begin{array}{\|l\|} \hline-10 \mathrm{to}+10 \mathrm{~V} \text { DC } \\ \text { (Input resistance } 200 \mathrm{k} \Omega \text {) } \\ \hline \end{array}$	-20 to $+20 \mathrm{mADC}, 4$ to 20 mA (Input resistance 250Ω)
Effective digital output	15 bits binary + 1-bit sign	14 bits binary + 1-bit sign
Resolution	$0.32 \mathrm{mV}(20 \mathrm{~V} \times 1 / 64000)$	$1.25 \mu \mathrm{~A}(40 \mathrm{~mA} \times 1 / 32000)$
Total precision	With ambient temperature $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$] $\pm 0.3 \%$ in respect to full-scale $20 \mathrm{~V}(\pm 60 \mathrm{mV})$ [With ambient temperature 0 to $55^{\circ} \mathrm{C}$] $\pm 0.5 \%$ in respect to full-scale $20 \mathrm{~V}(\pm 100 \mathrm{mV})$	With ambient temperature $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$] With input of -20 to +20 mA $\pm 0.5 \%(\pm 200 \mu \mathrm{~A})$ in respect to full-scale 40 mA Same as with input 4 to 20 mA With ambient temperature 0 to $55^{\circ} \mathrm{C}$] With input of -20 to +20 mA $\pm 1 \%(\pm 400 \mu \mathrm{~A})$ in respect to full-scale 40 mA Same as with input 4 to 20 mA
Conversion speed	$500 \mu \mathrm{~s} \times$ Number of channels ($5 \mathrm{~ms} \times$ Number of channels used when digital filter is used)	
Isolation method	Between input terminal and PLC: Photocoupler Between input terminal channels: Non-isolation	
Power supply	$5 \mathrm{VDC}, 110 \mathrm{~mA}$ (internal power supply) $24 \mathrm{VDC} \pm 10 \% 90 \mathrm{~mA} / 24 \mathrm{~V}$ DC (external power feed)	
Compatible CPU module	FX5U, FX5UC: Compatible from initial product Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).	
Number of occupied input/ output points	8 points (Either input or output is available for counting.)	
Communication with PLC	Carried out by FROM/TO instruction via buffer memory (buffer memory can directly be specified)	
Number of connectable modules	FX5U: Up to 8 modules when FX3U extension power supply modules are used Up to 6 modules when FX3U extension power supply modules are not used FX5UC: Up to 6 modules	
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{~mm})$	$55 \times 90 \times 87$	
MASS (Weight): kg	Approx. 0.2	

FX5-4DA special function block for analog output

Features

1) High-precision analog output module with $312.5 \mu \mathrm{~V}$ at voltage output and 625 nA at current output.
2) Spring clamp terminal block type with excellent vibration resistance.
3) Built-in waveform output function for continuous analog output at a set conversion cycle by registering prepared waveform data (digital value) to the module extension parameter. Faster and smoother output than with programming, and program-free control for reduced overall programming work.

Specifications

Items	Specifications			
Analog output points	4 points (4 channels)			
Analog output voltage	-10 to +10 V DC (external load resistance $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)			
Analog output current	0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(external} \mathrm{load} \mathrm{resistance} 0$ to 500Ω)			
Digital input	16-bit signed binary (-32768 to +32767)			
Output characteristics, resolution*1		alog output range	Digital value	Resolution
	Voltage	0 to 10 V	0 to 32000	$312.5 \mu \mathrm{~V}$
		0 to 5 V	0 to 32000	$156.3 \mu \mathrm{~V}$
		1 to 5 V	0 to 32000	$125 \mu \mathrm{~V}$
		-10 to +10 V	-32000 to +32000	$312.5 \mu \mathrm{~V}$
		User range setting	-32000 to +32000	$312.5 \mu \mathrm{~V}^{* 2}$
	Current	0 to 20 mA	0 to 32000	625 nA
		4 to 20 mA	0 to 32000	500 nA
		User range setting	-32000 to +32000	$500 \mathrm{nA} * 2$
Accuracy (full scale analog output value accuracy)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: within $\pm 0.1 \%$ (Noltage $\pm 20 \mathrm{mV}$, Current $\pm 20 \mu \mathrm{~A}$) Ambient temperature 0 to $55^{\circ} \mathrm{C}$: within $\pm 0.2 \%$ (Voltage $\pm 40 \mathrm{mV}$, Current $\pm 40 \mu \mathrm{~A}$) Ambient temperature -20 to $0^{\circ} \mathrm{C}$: within $\pm 0.3 \%$ (Voltage $\pm 60 \mathrm{mV}$, Current $\pm 60 \mu \mathrm{~A}$)			
Conversion speed	$80 \mu \mathrm{~s} / \mathrm{ch}$			
Isolation method	Between output terminal and PLC: Photocoupler Between output channels: Non-isolation			
Power supply	$5 \mathrm{~V} \mathrm{DC}, 100 \mathrm{~mA}$ (internal power supply) 24 V DC $+20 \%$, $-15 \% 150 \mathrm{~mA}$ (external power supply)			
Compatible CPU module	FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).			
Number of occupied I/O points	8 points (Either input or output is available for counting.)			
Number of connectable modules	FX5UJ: Up to 8 modules FX5U: Up to 16 modules FX5UC: Up to 15 modules			
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$40 \times 90 \times 102.2$			
MASS (Weight): kg	Approx. 0.2			

FX3U-4DA special function block for analog output

Features

1) High-precision analog output module with resolution of 15 bits binary + 1-bit sign (voltage) and 15 bits binary (current).
2) 4-channel voltage output (-10 to + 10 V DC) or current output (0 to 20 mA $\mathrm{DC}, 4$ to 20 mA DC) is allowed.
3) Voltage or current output can be specified for each channel.
4) Various functions such as table output function and upper-limit/ lower-limit value function have been provided.

Specifications

Items	Output voltage	Output current
Analog output range	$-10 \text { to +10 V DC }$ (External load $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)	0 to $20 \mathrm{mADC}, 4$ to 20 mA DC (External load 500Ω or less)
Effective digital input	15 bits binary + 1-bit sign	15-bit binary value
Resolution	$0.32 \mathrm{mV}(20 \mathrm{~V} \times 1 / 64000)$	$0.63 \mu \mathrm{~A}(20 \mathrm{~mA} \times 1 / 32000)$
Total precision	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$ $\pm 0.3 \%(\pm 60 \mathrm{mV})$ in respect to full-scale 20 V Ambient temperature 0 to $55^{\circ} \mathrm{C}$ $\pm 0.5 \% ~(\pm 100 \mathrm{mV})$ in respect to full-scale 20 V	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$ $\pm 0.3 \%(\pm 60 \mu \mathrm{~A})$ in respect to full-scale 20 mA Ambient temperature 0 to $55^{\circ} \mathrm{C}$ $\pm 0.5 \%(\pm 100 \mu \mathrm{~A})$ in respect to full-scale 20 mA
Conversion speed	1 ms (unrelated to the number of channels used)	
Isolation method	Between output terminal and PLC: Photocoupler Between output terminal channels: Non-isolation	
Power supply	5 V DC, 120 mA (internal power supply) 24 V DC $\pm 10 \% 160 \mathrm{~mA} / 24 \mathrm{~V}$ DC (external power feed)	
Compatible CPU module	FX5U, FX5UC: Compatible from initial product Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).	
Number of occupied input/ output points	8 points (Either input or output is available for counting.)	
Communication with PLC	Carried out by FROM/TO instruction via buffer memory (buffer memory can directly be specified)	
Number of connectable modules	FX5U: Up to 8 modules when FX3U extension power supply modules are used Up to 6 modules when FX3U extension power supply modules are not used FX5UC: Up to 6 modules	
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$55 \times 90 \times 87$	
MASS (Weight): kg	Approx. 0.2	

Built-in analog input/output function of FX5U CPU module

Features

FX5U CPU module has built-in analog input/output. It contains 2-channel analog input and 1-channel analog output.

Specifications (built-in analog input/output only)

Items		Specifications
A/D part	Analog input	0 to 10 V DC (Input resistance 115.7 Ω)
	Absolute maximum input	$-0.5 \mathrm{~V},+15 \mathrm{~V}$
	Digital output value	0 to 4000
	Digital output	Unsigned 12-bit binary
	Maximum resolution	2.5 mV
	Precision (Accuracy for the full scale of the digital output value)	At ambient temperature of $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, within $\pm 0.5 \%$ (± 20 digit*1) At ambient temperature of 0 to $55^{\circ} \mathrm{C}$, within $\pm 1.0 \%(\pm 40$ digit**) At ambient temperature of -20 to $0^{\circ} \mathrm{C}^{* 2}$, within $\pm 1.5 \%$ (± 60 digit ${ }^{* 1}$)
	Conversion speed	$30 \mu \mathrm{~s} /$ channels (data refreshed every operation cycle)

Items		Specifications	
D/A part	Analog output	0 to 10 V DC (External load resistance value $2 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)	
	Digital input value	0 to 4000	
	Digital input	Unsigned 12-bit binary	
	Maximum resolution	2.5 mV	
	Precision*3 (Accuracy for the full scale of the analog output value)	At ambient temperature of $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, within $\pm 0.5 \%$ (± 20 digit ${ }^{* 1}$) At ambient temperature of 0 to $55^{\circ} \mathrm{C}$, within $\pm 1.0 \%\left(\pm 40\right.$ digit *) $)$ At ambient temperature of -20 to $0^{\circ} \mathrm{C}^{* 2}$, within $\pm 1.5 \%$ (± 60 digit*1)	
	Conversion speed	$30 \mu \mathrm{~s}$ (data refreshed every operation cycle)	
	Items	Input specifications	Output specifications
Common part	Isolation method	Inside the PLC: Non-isolation Between input terminal channels: Non-isolation	Inside the PLC: Non-isolation
	Number of occupied input/output points	0 points (no occupied points)	
	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	FX5U-32MD: $150 \times 90 \times 83$ FX5U-64MD: $220 \times 90 \times 83$ FX5U-80MD: $285 \times 90 \times 83$	
	MASS (Weight): kg	$\begin{array}{\|l\|l\|} \hline \text { FX5U-32M■: Approx. } 0.70 \\ \text { FX5U-64M■: Approx. } 1.00 \\ \text { FX5U-80M■: Approx. } 1.20 \\ \hline \end{array}$	

*1: Digit refers to digital values.
*2: Products manufactured earlier than June 2016 do not support this specification.
*3: External load resistance is set to $2 \mathrm{k} \Omega$ when shipped from the factory. Thus, output voltage will increase somewhat if the resistance is set higher than $2 \mathrm{k} \Omega$.
When the resistance is $1 \mathrm{M} \Omega$, output voltage increases maximum 2%

Input/Output Devices for Voltage and Current
memo

Input Device for Temperature Sensor

Platinum resistance thermometer sensor (Pt100) or thermocouple temperature sensors can be connected. FX5-4LC type temperature control module, which provides PID control function with auto tuning, can use a function of intelligent function module to perform temperature control.

List of input devices for temperature sensor

Model (Number of channels)	Compatible sensor	Input specifications		Isolation method	Compatible CPU module				$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { channels } \end{aligned}$
		Items	Temperature input		FX5S	FX5UJ	FX5U	FX5UC	
$\begin{aligned} & \text { FX5-4AD-PT-ADP } \\ & (4 \mathrm{ch}) \end{aligned}$	Resistance temperature detector Pt100, Ni100	Input range	Pt100: - 200 to $850^{\circ} \mathrm{C}$ Ni100: -60 to $250^{\circ} \mathrm{C}$	Between input terminal and PLC: Photocoupler Between input terminal channels: Non-isolation	\bigcirc	0	0	\bigcirc	4 ch
		Resolution	$0.1{ }^{\circ} \mathrm{C}$						
$\begin{aligned} & \text { FX5-4AD-TC-ADP } \\ & (4 \mathrm{ch}) \end{aligned}$	Thermocouple K, J, T, B, R, S	Input range	[Typical example] K type: -200 to $1200^{\circ} \mathrm{C}$ J type: -40 to $750^{\circ} \mathrm{C}$						
		Resolution	$0.1^{\circ} \mathrm{C}$ to $0.3^{\circ} \mathrm{C}$ (depending on the sensor used)						
FX5-8AD (8 ch)	Resistance temperature detector Pt100, Ni100	Input range	$\begin{aligned} & \text { Pt100: }-200 \text { to } 850^{\circ} \mathrm{C} \\ & \text { Nit100: }-60 \text { to } 250^{\circ} \mathrm{C} \end{aligned}$	Between input terminal and PLC: Photocoupler Between input terminal channels: Non-isolation	\times	0	0	O*	8 ch
		Resolution	$0.1{ }^{\circ} \mathrm{C}$						
	Thermocouple K, J, T, B, R, S	Input range	[Typical example] K type: -200 to $1200^{\circ} \mathrm{C}$ J type: -40 to $750^{\circ} \mathrm{C}$						
		Resolution	$0.1^{\circ} \mathrm{C}$ to $0.3^{\circ} \mathrm{C}$ (depending on the sensor used)						
FX5-4LC (4 ch)	Resistance temperature detector 3-wire type Pt100 3-wire type JPt100 2-wire/3-wire type Pt1000	Input range	3-wire type Pt100: -200 to $600^{\circ} \mathrm{C}$ 3-wire type JPt100: -200 to $500^{\circ} \mathrm{C}$ 2-wire/3-wire type Pt1000: -200 to $650^{\circ} \mathrm{C}$	Between analog input part and PLC: Photocoupler Between transistor output part and PLC: Photocoupler Between analog input part and power supply: Insulation by the DC-DC converter Between transistor output part and power supply: Insulation by the DC-DC converter Between channels: insulated	\times	\bigcirc	0	O*	4 ch
		Resolution	$\begin{aligned} & 0.1^{\circ} \mathrm{C} \text { or } 1^{\circ} \mathrm{C} \\ & \text { (depends on the sensor used) } \end{aligned}$						
	Thermocouple K, J, T, B, R, S, N, PLII, W5Re/W26Re, U, L	Input range	[Typical example] K type: -200 to $1300^{\circ} \mathrm{C}$ J type: -200 to $1200^{\circ} \mathrm{C}$						
		Resolution	$\begin{aligned} & 0.1^{\circ} \mathrm{C} \text { or } 1^{\circ} \mathrm{C} \\ & \text { (depending on the sensor used) } \end{aligned}$						
	Micro voltage input	Input range	0 to $10 \mathrm{mV} \mathrm{DC}$,0 to 100 mV DC						
		Resolution	$0.5 \mu \mathrm{~V}, 5.0 \mu \mathrm{~V}$						
FX3U-4LC (4 ch) \square II \square	Resistance temperature detector 3-wire type Pt100 3-wire type JPt100 2-wire/3-wire type Pt1000	Input range	[Typical example] Pt100: -200 to $600^{\circ} \mathrm{C}$ Pt1000: -200.0 to $650.0^{\circ} \mathrm{C}$	Between inside and channels: Photocoupler Between inside and power supply: Insulation by the DC-DC converter Between channels: insulated	\times	\times	O*2	O*2	4 ch
		Resolution	$0.1^{\circ} \mathrm{C}$ or $1^{\circ} \mathrm{C}$ (depending on the sensor used)						
	Thermocouple K, J, R, S, E, T, B, N,	Input range	[Typical example] K type: - 200.0 to $1300^{\circ} \mathrm{C}$ J type: -200.0 to $1200^{\circ} \mathrm{C}$						
	PLII, W5Re/W26Re, U, L	Resolution	$0.1^{\circ} \mathrm{C}$ or $1^{\circ} \mathrm{C}$ (depending on the sensor used)						
	Micro voltage input	Input range	0 to $10 \mathrm{mV} \mathrm{DC}$,0 to 100 mV DC						
		Resolution	$0.5 \mu \mathrm{~V}, 5.0 \mu \mathrm{~V}$						

[^47]
Features

1) Resistance temperature detector (Pt100, Ni100) temperature sensor input expansion adapter
2) Four channels can be measured with high resolution of $0.1^{\circ} \mathrm{C}$.
3) It is possible to use a combination of temperature sensors for each channel.
4) The measurement unit can be expressed in degrees Celsius (${ }^{\circ} \mathrm{C}$) or Fahrenheit (${ }^{\circ} \mathrm{F}$).
5) Data transfer is possible without programming (no dedicated instructions).
\checkmark Specifications

*1: Only 3-wire type resistance temperature detectors can be used
*2: For details of conversion speeds, refer to the manual.
*3: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

FX5-4AD-TC-ADP thermocouple temperature sensor input expansion adapter

Features

1) Thermocouple temperature sensor input expansion adapter
2) Four channels can be measured with high resolution of $0.1^{\circ} \mathrm{C}$.
3) It is possible to use a combination of temperature sensors for each channel.
4) The measurement unit can be expressed in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ or Fahrenheit (${ }^{\circ} \mathrm{F}$).
5) Data transfer is possible without programming (no dedicated instructions).

Specifications

Item			Specifications		
Analog input points			4 points (4 channels)		
Applicable thermocouple*1			K, J, T, B, R, S		
Temperature measuring range		K	-200 to $1200^{\circ} \mathrm{C}$ (-328 to $2192^{\circ} \mathrm{F}$)		
		J	-40 to $750^{\circ} \mathrm{C}\left(-40\right.$ to $\left.1382^{\circ} \mathrm{F}\right)$		
		T	-200 to $350^{\circ} \mathrm{C}\left(-328\right.$ to $\left.662^{\circ} \mathrm{F}\right)$		
		B	600 to $1700^{\circ} \mathrm{C}\left(1112\right.$ to $\left.3092^{\circ} \mathrm{F}\right)$		
		R	0 to $1600^{\circ} \mathrm{C}$ (32 to $2912^{\circ} \mathrm{F}$)		
		S	0 to $1600^{\circ} \mathrm{C}$ (32 to $2912^{\circ} \mathrm{F}$)		
Digital output value			16-bit signed binary value		
		K	-2000 to 12000 (-3280 to 21920)		
		J	-400 to 7500 (-400 to 13820)		
		T	-2000 to 3500 (-3280 to 6620)		
		B	6000 to 17000 (11120 to 30920)		
		R	0 to 16000 (320 to 29120)		
		S	0 to 16000 (320 to 29120)		
	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	K	$\pm 3.7^{\circ} \mathrm{C}\left(-100 \text { to } 1200^{\circ} \mathrm{C}\right)^{* 2}$		C (-150 to $\left.-100^{\circ} \mathrm{C}\right)^{* 2}$
			$\pm 7.2^{\circ} \mathrm{C}\left(-200 \text { to }-150^{\circ} \mathrm{C}\right)^{* 2}$		
		J	$\pm 2.8^{\circ} \mathrm{C}$		
		T	$\pm 3.1^{\circ} \mathrm{C}\left(0 \text { to } 350^{\circ} \mathrm{C}\right)^{* 2}$	± 4.1	($\left(-100 \text { to } 0^{\circ} \mathrm{C}\right)^{* 2}$
			$\pm 5.0^{\circ} \mathrm{C}\left(-150 \text { to }-100^{\circ} \mathrm{C}\right)^{* 2}$	± 6.7	(-200 to -150 $\left.{ }^{\circ} \mathrm{C}\right)^{* 2}$
		B	$\pm 3.5^{\circ} \mathrm{C}$		
		R	$\pm 3.7^{\circ} \mathrm{C}$		
		S	$\pm 3.7^{\circ} \mathrm{C}$		
	Ambient temperature -20 to $55^{\circ} \mathrm{C}$	K	$\pm 6.5^{\circ} \mathrm{C}\left(-100 \text { to } 1200^{\circ} \mathrm{C}\right)^{* 2}$	± 7.5	C (-150 to $\left.-100^{\circ} \mathrm{C}\right)^{* 2}$
			$\pm 8.5^{\circ} \mathrm{C}\left(-200 \text { to }-150^{\circ} \mathrm{C}\right)^{* 2}$		
		J	$\pm 4.5^{\circ} \mathrm{C}$		
		T	$\pm 4.1^{\circ} \mathrm{C}\left(0 \text { to } 350^{\circ} \mathrm{C}\right)^{* 2}$	± 5.1	C (-100 to $\left.0^{\circ} \mathrm{C}\right)^{* 2}$
			$\pm 6.0^{\circ} \mathrm{C}\left(-150 \text { to }-100^{\circ} \mathrm{C}\right)^{* 2}$	± 7.7	C (-200 to -150 $\left.{ }^{\circ} \mathrm{C}\right)^{* 2}$
		B	$\pm 6.5^{\circ} \mathrm{C}$		
		R	$\pm 6.5^{\circ} \mathrm{C}$		
		S	$\pm 6.5^{\circ} \mathrm{C}$		
Resolution		K, J, T	$0.1^{\circ} \mathrm{C}\left(0.1\right.$ to $\left.0.2^{\circ} \mathrm{F}\right)$		
		B, R, S	0.1 to $0.3^{\circ} \mathrm{C}\left(0.1\right.$ to $\left.0.6^{\circ} \mathrm{F}\right)$		
Conversion speed*3			Approx. $85 \mathrm{~ms} /$ channel		
Isolation method			Between input terminal and CPU module: Photocoupler Between input terminal channels: Non-isolation		
Power supply			24 V DC, 20 mA (internal power supply)*4 5 V DC, 10 mA (internal power supply)*4		
Compatible CPU module			FX5S, FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.040 or later		
Number of occupied I/O points			0 points (no occupied points)		
Number of connectable modules			FX5S, FX5U, FX5UC: Up to 4 modules to the left side of CPU module, FX5UJ: Up to 2 modules to the left side of CPU module		
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$			$17.8 \times 106 \times 89.1$		
MASS (Weight): kg			Approx. 0.1		

*1: Obtaining sufficient accuracy requires a warm-up of 45 minutes (energization).
*2: Accuracy varies depending on the measured temperature range in ().
*3: For details of conversion speeds, refer to the manual.
*4: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

Features

1) Since a single module can handle input of voltage, current, thermocouple, and resistance temperature detector, there is no need to prepare multiple modules for different objects.
2) The module can easily detect a disconnection of the thermocouple or resistance temperature detector, and therefore can reduce the downtime and maintenance cost.
3) Data of 10000 points can be logged for each channel and saved in buffer memory. Saving logs will be useful for troubleshooting.

Specifications

Item		Specifications	
Analog input points		8 points (8 channels)	
Analog input voltage		-10 to 10 V DC (input resistance 1 M)	
Analog input current		-20 to +20 mA DC (input resistance 250Ω)	
Absolute maximum input		Voltage: $\pm 15 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$	
Input characteristics, resolution* ${ }^{*}$	Thermocouple	K, J, T: $0.1^{\circ} \mathrm{C}$ (0.1 to $0.2^{\circ} \mathrm{F}$) B, R, S: 0.1 to $0.3^{\circ} \mathrm{C}$ (0.1 to $0.6^{\circ} \mathrm{F}$)	
	Resistance temperature detector	$0.1^{\circ} \mathrm{C}\left(0.2^{\circ} \mathrm{F}\right)$	
Digital output value (16-bit signed binary value)	Thermocouple	$\begin{aligned} & \text { K: }-2000 \text { to }+12000(-3280 \text { to }+21920) \\ & \text { J. }-400 \text { to }+7500(-400 \text { to }+13820) \\ & \text { T: }-2000 \text { to }+3500(-3280 \text { to }+6620) \\ & \text { B: } 6000 \text { to } 17000(11120 \text { to } 30920) \\ & \text { R: } 0 \text { to } 16000(320 \text { to } 29120) \\ & \text { S: } 0 \text { to } 16000(320 \text { to } 29120) \\ & \hline \end{aligned}$	
	Resistance temperature detector	$\begin{aligned} & \text { Pt100: }-2000 \text { to }+8500(-3280 \text { to }+15620) \\ & \text { Ni100: }-600 \text { to }+2500(-760 \text { to }+4820) \end{aligned}$	
Accuracy	Thermocouple*2	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{K}: \pm 3.5^{\circ} \mathrm{C}\left(-200 \text { to }-150^{\circ} \mathrm{C}\right) \\ & \mathrm{K}: \pm 2.5^{\circ} \mathrm{C}\left(-150 \text { t t }-1000^{\circ} \mathrm{C}\right) \\ & \mathrm{K}: \pm 1.5^{\circ} \mathrm{C}\left(-100 \text { to } 1200^{\circ} \mathrm{C}\right) \\ & \mathrm{J}: \pm 1.2^{\circ} \mathrm{C} \\ & \mathrm{~T}: \pm 3.5^{\circ} \mathrm{C}\left(-200 \text { to }-150^{\circ} \mathrm{C}\right) \\ & \mathrm{T}: \pm 2.5^{\circ} \mathrm{C}\left(-150 \text { to }-100^{\circ} \mathrm{C}\right) \\ & \mathrm{T}: \pm 1.5^{\circ} \mathrm{C}\left(-100 \text { to } 350^{\circ} \mathrm{C}\right) \\ & \mathrm{B}: \pm 2.3^{\circ} \mathrm{C} \\ & \mathrm{R}: \pm 2.5^{\circ} \mathrm{C} \\ & \mathrm{~S}: \pm 2.5^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
		Ambient temperature -20 to $55^{\circ} \mathrm{C}$	K: $\pm 8.5^{\circ} \mathrm{C}\left(-200\right.$ to $\left.-150^{\circ} \mathrm{C}\right)$ $\mathrm{K}: \pm 7.5^{\circ} \mathrm{C}\left(-150\right.$ to $\left.-100^{\circ} \mathrm{C}\right)$ $\mathrm{K}: \pm 6.5^{\circ} \mathrm{C}\left(-100\right.$ to $\left.1200^{\circ} \mathrm{C}\right)$ $\mathrm{J}: \pm 3.5^{\circ} \mathrm{C}$ T: $\pm 5.2^{\circ} \mathrm{C}\left(-200\right.$ to $\left.-150^{\circ} \mathrm{C}\right)$ T: $\pm 4.2^{\circ} \mathrm{C}\left(-150\right.$ to $\left.-100^{\circ} \mathrm{C}\right)$ T: $\pm 3.1^{\circ} \mathrm{C}\left(-100\right.$ to $\left.350^{\circ} \mathrm{C}\right)$ B: $\pm 6.5^{\circ} \mathrm{C}$ R: $\pm 6.5^{\circ} \mathrm{C}$ S: $\pm 6.5^{\circ} \mathrm{C}$
	Resistance temperature detector	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pt100: } \pm 0.8^{\circ} \mathrm{C} \\ & \text { Ni } 100: \pm 0.4^{\circ} \mathrm{C} \end{aligned}$
		Ambient temperature -20 to $55^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pt100: } \pm 2.4^{\circ} \mathrm{C} \\ & \text { Ni } 100: \pm 1.2^{\circ} \mathrm{C} \end{aligned}$
Conversion speed	Thermocouple/ Resistance temperature detector	$40 \mathrm{~ms} / \mathrm{ch}$	
Isolation method		Between input terminal and PLC: Photocoupler Between input terminal channels: Non-isolation	
Power supply		$24 \mathrm{VDC}, 40 \mathrm{~mA}$ (internal power supply) 24 V DC $+20 \%,-15 \% 100 \mathrm{~mA}$ (external power supply)	
Compatible CPU module		FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).	
Applicable engineering tool		FX5UJ: GX Works3 Ver. 1.060N or later FX5U, FX5UC: GX Works3 Ver. 1.025B or later	
Number of occupied I/O points		8 points (Either input or output is available for counting.)	
Number of connectable modules		FX5UJ: Up to 8 modules FX5U: Up to 16 modules FX5UC: Up to 15 modules	
External dimensions W $\times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$50 \times 90 \times 102.2$	
MASS (Weight): kg		Approx. 0.3	

*2: To stabilize the accuracy, warm-up (supply power) the system for 30 minutes or more after power-on.

FX5-4LC temperature control module

Features

1) Being compatible with the thermocouple, resistance temperature detector, and micro voltage input, the module can be used for a wide range of applications.
2) The module can suppress the overshoot in which the output value exceeds the target value or hunting phenomenon which oscillates before and after the target value.
3) Since the change in temperature can be checked with the waveform, parameters can be adjusted while checking the waveform displayed in real time.

Specifications

Item		Specifications		
Control system		Two-position control, standard PID control, heating/cooling PID control, cascade control		
Control operation cycle		$250 \mathrm{~ms} / 4 \mathrm{ch}$		
Temperature measuring range		Thermocouple	K: -200 to $+1300^{\circ} \mathrm{C}\left(-100\right.$ to $\left.+2400^{\circ} \mathrm{F}\right)$ J: -200 to $+1200^{\circ} \mathrm{C}\left(-100\right.$ to $\left.+2100^{\circ} \mathrm{F}\right)$ T: -200 to $+400^{\circ} \mathrm{C}\left(-300\right.$ to $\left.+700^{\circ} \mathrm{F}\right)$ S: 0 to $1700^{\circ} \mathrm{C}\left(0\right.$ to $\left.3200^{\circ} \mathrm{F}\right)$ R: 0 to $1700^{\circ} \mathrm{C}\left(0\right.$ to $\left.3200^{\circ} \mathrm{F}\right)$ E: -200 to $+1000^{\circ} \mathrm{C}$ (0 to $1800^{\circ} \mathrm{F}$)	B: 0 to $1800^{\circ} \mathrm{C}\left(0\right.$ to $\left.3000^{\circ} \mathrm{F}\right)$ $\mathrm{N}: 0$ to $1300^{\circ} \mathrm{C}\left(0\right.$ to $2300^{\circ} \mathrm{F}$) PLII: 0 to $1200^{\circ} \mathrm{C}\left(0\right.$ to $2300^{\circ} \mathrm{F}$) W5Re/W26Re: 0 to $2300^{\circ} \mathrm{C}\left(0\right.$ to $3000^{\circ} \mathrm{F}$) U: -200 to $+600^{\circ} \mathrm{C}\left(-300\right.$ to $\left.+700^{\circ} \mathrm{F}\right)$ $\mathrm{L}: 0$ to $900^{\circ} \mathrm{C}\left(0\right.$ to $\left.1600^{\circ} \mathrm{F}\right)$
		Resistance temperature detector	Pt100 (3-wire type): -200 to $+600^{\circ} \mathrm{C}\left(-300\right.$ to $\left.+1100^{\circ} \mathrm{F}\right)$ JPt100 (3-wire type): -200 to $+500^{\circ} \mathrm{C}\left(-300\right.$ to $\left.+900^{\circ} \mathrm{F}\right)$ Pt1000 (2-wire/3-wire type): -200.0 to $+650.0^{\circ} \mathrm{C}\left(-328\right.$ to $\left.+1184^{\circ} \mathrm{F}\right)$	
		Micro voltage input	0 to $10 \mathrm{mV} \mathrm{DC}$,0 to 100 mV DC	
Heater disconnection detection		Alarm detection		
Input specifications	Number of input points	4 points		
	Input type (selectable for each channel)	Thermocouple	K, J, R, S, E, T, B, N, PLII, W5Re/W26Re, U, L	
		Resistance temperature detector	3-wire type Pt100 3-wire type JPt100 2-wire/3-wire type Pt1000	
		Micro voltage input		
	Measurement accuracy*	Refer to the MELSEC iQ-F FX5 User's Manual (Temperature Control).		
	Cold junction temperature compensation error	Ambient temperature 0 to $55^{\circ} \mathrm{C}$	Within $\pm 1.0^{\circ} \mathrm{C}$. When the input value is -150 to $-100^{\circ} \mathrm{C}$: Within $\pm 2.0^{\circ} \mathrm{C}$. When the input value is -200 to $-150^{\circ} \mathrm{C}$: Within $\pm 3.0^{\circ} \mathrm{C}$	
		Ambient temperature $-20 \text { to } 0^{\circ} \mathrm{C}$	Within $\pm 1.8^{\circ} \mathrm{C}$. When the input value is -150 to $-100^{\circ} \mathrm{C}$: Within $\pm 3.6^{\circ} \mathrm{C}$. When the input value is -200 to $-150^{\circ} \mathrm{C}$: Within $\pm 5.4^{\circ} \mathrm{C}$	
	Resolution	$0.1^{\circ} \mathrm{C}\left(0.1^{\circ} \mathrm{F}\right), 1.0^{\circ} \mathrm{C}\left(1.0^{\circ} \mathrm{F}\right), 0.5 \mu \mathrm{~V}$, or $5.0 \mu \mathrm{~V}$ (depends on the input range of the sensor used)		
	Sampling cycle	$250 \mathrm{~ms} / 4 \mathrm{ch}$		
	Influence of input conductor resistance (for resistance temperature detector input)	3-wire type	Approx. $0.03 \% / \Omega$ for full scale, and 10Ω or less per line	
		2-wire type	Approx. $0.04 \% / \Omega$ for full scale, and 7.5Ω or less per line	
	Influence of external resistance (for thermocouple input)	About $0.125 \mu \mathrm{~V} / \Omega$		
	Input impedance	$1 \mathrm{M} \Omega$ or more		
	Sensor current	Approx. 0.2 mA (for resistance temperature detector input)		
	Operation at input disconnection/ short circuit	Upscale/downscale (for resistance temperature detector input)		
Current detector (CT) input specifications	Number of input points	4 points		
	Sampling cycle	0.5 seconds		
Output specifications		Number of points: 4 Type: NPN open collector transistor output, Rated load voltage: 5 to 24 V DC Maximum load current: 100 mA , Control output cycle: 0.5 to 100.0 seconds		
Power supply		5 V DC, 140 mA (internal power supply) 24 V DC $+20 \%,-15 \% 25 \mathrm{~mA}$ (external power supply)		
Isolation method		- The analog input part and between the transistor output part and PLC are insulated by the photocoupler. - The analog input part and between the transistor output part and power supply are insulated by the $\mathrm{DC} / D C$ converter. - Insulated between channels		
Compatible CPU module		FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).		
Applicable engineering tool		FX5UJ: GX Works3 Ver. 1.060N or later FX5U, FX5UC: GX Works3 Ver. 1.035M or later		
Number of occupied I/O points		8 points (Either input or output is available for counting.)		
Number of connectable modules		FX5UJ: Up to 8 modules FX5U: Up to 16 modules FX5UC: Up to 15 modules		
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$60 \times 90 \times 102.2$		
MASS (Weight): kg		Approx. 0.3		

Features

1) The module provides 4-ch temperature sensor input and control output through which "two-position control, standard PID control (auto-tuning possible), heating/cooling PID control, and cascade control" can be carried out. It can also be used in combination with an analog input/output module to perform PID control by voltage and current.
2) The module is newly equipped with cascade control. With two control loops of master and slave, the module can quickly adjust the temperature against temperature change due to disturbance or the like.
3) Heating/cooling PID control of up to 4 loops can be performed by output operation of 2 systems (heating output and cooling output). Temperature control can be achieved with high stability in both the heating and cooling sides.
4) Micro voltage signals such as "0-10 mV DC" and "0-100 mV DC" can be input. Sensors such as micro voltage output sensor can directly be connected.
5) The module supports a wide range of thermocouple temperature sensor and high-precision Pt1000 temperature sensor.

Specifications

*1: Differs depending on the sensor input range.
*2: To stabilize the measurement accuracy, warm-up (supply power) the system for 30 minutes or more after power-on.
*3: Digit refers to digital values.

High-Speed Counter

Using high-speed counters allow PLC to capture high-speed signals from encoders and sensors.
Since the CPU module has built-in high performance high-speed counters, high-speed control is possible with simple programs.

List of high-speed counters

Built-in high-speed counter functions of CPU module*1

Model	Type	Maximum frequency		Operation mode	High-speed processing instruction
		FX5S/FX5UJ	FX5U/FX5UC		
FX5S/FX5UJ/FX5U/FX5UC	1-phase, 1-input (S/W)	$100 \mathrm{kHz}{ }^{* 2}$	200 kHz	- Normal mode - Pulse density measurement mode - Rotation speed measurement mode	- 32-bit data comparison set - 32-bit data comparison reset - 32-bit data band comparison - 16-bit data high-speed input/output function start/stop - 32-bit data high-speed input/output function start/stop
	1-phase, 1-input (H/W)	$100 \mathrm{kHz}{ }^{* 2}$	200 kHz		
	1-phase, 2-input	100 kHz	200 kHz		
	2-phase, 2-input [1 edge count]	100 kHz	200 kHz		
	2-phase, 2-input [2 edge count]	50 kHz	100 kHz		
	2-phase, 2-input [4 edge count]	25 kHz	50 kHz		
	Internal clock	1 MHz (fixed)	1 MHz (fixed)		

*1: For the details of the high-speed counter functions, refer to the manual.
*2: 1-phase, 1 -input $100 \mathrm{kHz}: 4 \mathrm{ch}, 10 \mathrm{kHz}: 4 \mathrm{ch}$

High-speed counter of FX5S/FX5UJ/FX5U/FX5UC CPU module

High-speed counters use parameters to make input allocation and function settings and use HIOEN instruction to perform operations.
Types of high-speed counters

\diamond Built-in high-speed counter input allocation

Parameter is used to set the input device allocation of high-speed counters.
Parameter is used to set the function for each channel, and input device allocation is determined by the settings. When internal clock is used, the allocation is the same as that of 1-phase, 1 -input (S/W), without using phase A.

- FX5S/FX5UJ CPU module

CH	Type of high-speed counter	X0	X1	X2	X3	X4	X5	X6	X7	X10	X11	X12	X13	X14	X15	X16	X17
CH1	1-phase, 1-input (S/W)	A	P					E									
	1-phase, 1-input (H/W)	A	B	P				E									
	1-phase, 2-input	A	B	P				E									
	2-phase, 2-input	A	B	P				E									
CH 2	1-phase, 1-input (S/W)		A	P					E								
	1-phase, 1-input (H/W)		A	B	P				E								
	1-phase, 2-input		A	B	P				E								
CH3	1-phase, 1-input (S/W)			A	P					E							
	1-phase, 1-input (H/W)			A	B	P				E							
	1-phase, 2-input			A	B	P				E							
CH 4	1-phase, 1-input (S/W)				A	P					E						
	1-phase, 1-input (H/W)				A	B	P				E						
	1-phase, 2-input				A	B	P				E						
	2-phase, 2-input				A	B	P				E						
CH5	1-phase, 1-input (S/W)					A	P					E					
	1-phase, 1-input (H/W)					A	B	P				E					
	1-phase, 2-input					A	B	P				E					
CH6	1-phase, 1-input (S/W)						A	P					E				
	1-phase, 1-input (H/W)						A	B	P				E				
	1-phase, 2-input						A	B	P				E				
	2-phase, 2-input						A	B	P				E				
CH 7	1-phase, 1-input (S/W)							A	P					E			
	1-phase, 1-input (H/W)							A	B	P				E			
	1-phase, 2-input							A	B	P				E			
	2-phase, 2-input							A	B	P				E			
CH8	1-phase, 1-input (S/W)								A	P					E		
	1-phase, 1-input (H/W)								A	B	P				E		

[^48]- FX5U/FX5UC CPU module

CH	Type of high-speed counter	X0	X1	X2	X3	X4	X5	X6	X7	X10	X11	X12	X13	X14	X15	X16	X17
CH1	1-phase, 1-input (SM)	A								P	E						
	1-phase, 1-input (H/W)	A	B							P	E						
	1-phase, 2-input	A	B							P	E						
	2-phase, 2-input	A	B							P	E						
CH2	1-phase, 1-input (SM)		A									P	E				
	1-phase, 1-input (H/W)			A	B							P	E				
	1-phase, 2-input			A	B							P	E				
	2-phase, 2-input			A	B							P	E				
CH3	1-phase, 1-input (SM)			A										P	E		
	1-phase, 1-input (H/W)					A	B							P	E		
	1-phase, 2-input					A	B							P	E		
	2-phase, 2-input					A	B							P	E		
CH4	1-phase, 1-input (SM)				A											P	E
	1-phase, 1-input (H/W)							A	B							P	E
	1-phase, 2-input							A	B							P	E
	2-phase, 2-input							A	B							P	E
CH5	1-phase, 1-input (SM)					A				P	E						
	1-phase, 1-input (H/W)									A	B	P	E				
	1-phase, 2-input									A	B	P	E				
	2-phase, 2-input									A	B	P	E				
CH6	1-phase, 1-input (SM)						A					P	E				
	1-phase, 1-input (HM)											A	B	P	E		
	1-phase, 2-input											A	B	P	E		
	2-phase, 2-input											A	B	P	E		
CH 7	1-phase, 1-input (SM)							A						P	E		
	1-phase, 1-input (H/W)													A	B	P	E
	1-phase, 2-input													A	B	P	E
	2-phase, 2-input													A	B	P	E
CH8	1-phase, 1-input (SM)								A							P	E
	1-phase, 1-input (H/W)															A	B
	1-phase, 2-input															A	B
	2-phase, 2-input															A	B
$\begin{array}{\|l\|} \hline \mathrm{CH} 1 \\ \text { to } \\ \mathrm{CH} 8 \end{array}$	Internal clock	Not used															

A: Input A phase
B: Input B phase (direction switch input is however employed in the case of 1-phase 1-input [H/W])
P: Input external preset (Use or nonuse can be selected for each channel using parameters.)
E: Input external enable (Use or nonuse can be selected for each channel using parameters.)

High-speed pulse input/output module

Model	Type	Maximum frequency	Operation mode	High-speed processing instruction	Compatible CPU module			
					FX5S	FX5UJ	FX5U	FX5UC
$\begin{aligned} & \text { FX5-16ET/ES-H } \\ & \text { FX5-16ET/ESS-H } \end{aligned}$	1-phase, 1-input (S/W)	200 kHz	- Normal mode	- 16-bit data high-speed input/output function start/stop - 32-bit data high-speed input/output function start/stop	\times	0	0	O*
	1-phase, 1-input (H/W)	200 kHz						
	1-phase, 2-input	200 kHz						
	2-phase, 2-input [1 edge count]	200 kHz						
	2-phase, 2-input [2 edge count]	100 kHz						
	2-phase, 2-input [4 edge count]	50 kHz						
	Internal clock	1 MHz (fixed)						

*: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).

Input assignment and the maximum frequency for each input assignment of the high-speed pulse input/output module

" \square " of each input represents the prefix input number of the high-speed pulse input/output module.
" $\mathrm{X} \square+6$ " and " $X \square+7$ " are input frequencies up to 10 kHz , regardless of maximum frequency value.
Preset input and enable input are input frequencies up to 10 kHz , regardless of maximum frequency value.

CH	High-speed counter type	X \square	X $\square+1$	$X \square+2$	X $\square+3$	X $\square+4$	$X \square+5$	$\mathrm{X} \square+6$	X $\square+7$	Maximum frequency
CH 9 , CH11, CH13, CH15	1-phase, 1-input (S/W)	A	P					E		200 kHz
	1-phase, 1-input (H/W)	A	B	P				E		200 kHz
	1-phase, 2-input	A	B	P				E		200 kHz
	2-phase, 2-input [1 edge count]	A	B	P				E		200 kHz
	2-phase, 2-input [2 edge count]	A	B	P				E		100 kHz
	2-phase, 2-input [4 edge count]	A	B	P				E		50 kHz
$\begin{aligned} & \mathrm{CH} 10, \\ & \mathrm{CH} 12, \\ & \mathrm{CH} 14, \\ & \mathrm{CH} 16 \end{aligned}$	1-phase, 1-input (S/W)				A	P			E	200 kHz
	1-phase, 1-input (H/W)				A	B	P		E	200 kHz
	1-phase, 2-input				A	B	P		E	200 kHz
	2-phase, 2-input [1 edge count]				A	B	P		E	200 kHz
	2-phase, 2-input [2 edge count]				A	B	P		E	100 kHz
	2-phase, 2-input [4 edge count]				A	B	P		E	50 kHz
CH 9 to CH 16	Internal clock	Not used								

A: Input A phase
B: Input B phase (direction switch input is however employed in the case of 1 -phase 1-input [H/W])
P: Input external preset (Use or nonuse can be selected for each channel using parameters.)
E: Input external enable (Use or nonuse can be selected for each channel using parameters.)

High-speed counter block

Model (Number of channels)	Type	Highest response frequency	Function	Hardware comparison output function	2-phase counter edge count function	Compatible CPU module			
						FX5S	PX5UJ	FX5U	FX5UC
FX3U-2HC (2 ch)	1-phase 1-input	Max. 200 kHz	With match output (delay of up to $30 \mu \mathrm{~s}$) function Output type: Output common to sink/source 2 points/channel	\bigcirc		\times	\times	O* Up to 2 modules	Up to 2 modules
	1-phase 2-input	Max. 200 kHz							
	2-phase 2-input	1 edge count: Max. 200 kHz 2 edge count: Max. 100 kHz 4 edge count: Max. 50 kHz			\bigcirc				

[^49]
FX3U-2HC high-speed counter block

Features

1) Input of 2 -ch high-speed signal can be made in a module to count a maximum of 200 kHz . Each channel is equipped with 2 high-speed output terminal points based on the setting of comparison value received from CPU module.
2) In 2-phase input, 1/2/4 edge count mode can be set.
3) Counting can be permitted/inhibited in CPU module or external input.
4) Connection with an encoder of line driver output type can be made.
5) I/O signal connection adopts a connector system and is compact.

Specifications

Items				
No. of input points	2 points			
Signal level	According to connection terminals, 5 V DC, 12 V DC and 24 V DC are selectable. The line driver output type is connected to the 5 V terminal.			
Frequency	1-phase, 1-input: 200 kHz or less 1-phase, 2-input: 200 kHz or less 2-phase, 2-input: 200 kHz or less/1 edge count, 100 kHz or less/2 edge count, 50 kHz or less/4 edge count			
Counting range	Binary signed 32 bits (-2,147,483,648 to +2,147,483,647) or binary unsigned 16 bits (0 to 65,535)			
Count mode	Automatic up/down (with 1-phase 2-input or 2-phase input, or selected up/down (with 1-phase 1-input)			
Match output	When the current value of the counter matches a comparison set value, comparison output is set within $30 ~ \mu s ~(O N), ~ a n d ~ c l e a r e d ~(O F F) ~ w i t h i n ~ 100 ~$			
Ous by reset instruction.		$	$	2 points/ch, 5 to 24 V DC 0.5 A (output common to sink/source)
:---	:---			
Additional function				
Buffer memory is available to set mode and comparison data from the CPU module.				
Current value, comparison results, and error status can be monitored via the CPU				
module.				

Option

Connector for discrete wires (40-pin)

Model name	Type
FX-I/O-CON2-S	Connector for single wires AWG22 $\left(0.3 \mathrm{~mm}^{2}\right)$
FX-I/O-CON2-SA	Connector for single wires AWG20 $\left(0.5 \mathrm{~mm}^{2}\right)$

External device connection connectors and connection cables etc. are not included with the product. Please arrange them by the customer.

FX5-16ET/E \square-H high-speed pulse input/output module

Features

1) Input of high-speed pulses can be counted ($2 \mathrm{ch}, 200 \mathrm{kHz}$).
2) The high-speed counter function and the positioning function can be used together (2 ch +2 axes). The terminals not assigned to highspeed input/output can be used as general-purpose inputs/outputs.

Specifications

Items		Specifications
High-speed pulse input		2 ch
Input response frequency	X \square to $\mathrm{X} \square+5^{*}$	200 kHz
	X $\square+6, \mathrm{X} \square+7^{*}$	10 kHz
Power supply		$5 \mathrm{~V} \mathrm{DC}, 100 \mathrm{~mA}$ (internal power supply) 24 V DC, 125 mA (supplied from service power supply or external power supply)
Compatible CPU module		FX5UJ, FX5U, FX5UC from Ver. 1.030 Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Applicable engineering tool		FX5UJ: GX Works3 Ver. 1.085P or later FX5U, FX5UC: GX Works3 Ver. 1.025B or later
Number of connectable modules		FX5UJ, FX5U, FX5UC: Up to 4 modules
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$40 \times 90 \times 83$
MASS (Weight): kg		Approx. 0.25

[^50]High-Speed Counter
memo

Positioning Control

In addition to CPU module built-in positioning instructions, a pulse output module has been prepared to achieve full-scale positioning control. Furthermore, simple motion modules, which can perform complicated control as well as even multi-axis/interpolation control, are lined up to support positioning control.

List of positioning control

Built-in pulse output function of CPU module

	Mode/fieature	Items	Function
Built-in pulse output function of CPU module	FX5S/FX5UJ/FX5U/FX5UC In case of pulse train + sign Simple linear interpolation (2-axis simultaneous start) This module has a built-in 4-axis*1 high-speed pulse output and built-in positioning function with 8 input channels and 4 -axis*1 pulse output.	Number of control axes	FX5UJ: 3 axes FX5S, FX5U, FX5UC: 4 axes*2 (Simple linear interpolation by 2-axis simultaneous start)
		Maximum frequency	FX5S: 100 kpps (100 kpps in pulses) FX5UJ, FX5U, FX5UC: 200 kpps (200 kpps in pulses)
		Positioning program	Sequence program, Table operation
		Compatible CPU module	Transistor output type
		Pulse output instruction	PLSY and DPLSY instructions
		Positioning instruction	DSZR, DDSZR, DVIT, DDVIT, TBL, DRVTBL, DRVMUL, DABS, PLSV, DPLSV, DRVI, DDRVI, DRVA, and DDRVA instructions

*1: 3 axes in the FX5UJ CPU module.
*2: The number of control axes is 2 when the pulse output mode is CW/CCW mode.
High-speed pulse input/output module

					patible	PU mod	dule
	Mode/fieature	Items	Function	FX5S	FX5UJ	FX5U	FX5UC
$\frac{0}{3}$	$\begin{aligned} & \text { FX5-16ET/ES-H } \\ & \text { FX5-16ET/ESS-H } \end{aligned}$	Number of control axes	2 axes (Simple linear interpolation by 2-axis simultaneous start)				
$\stackrel{\square}{\square}$		Maximum frequency	200 kpps (200 kpps in pulses)				
율		Positioning program	Sequence program, Table operation				
늘			FX5-16ET/ES-H: Transistor output (Sink type)	\times	-	-	*
$\begin{aligned} & \text { 忈 } \\ & \frac{\mathrm{N}}{\mathbf{Z}} \end{aligned}$		Output type	FX5-16ET/ESS-H: Transistor output (Source type)				
O	Because various positioning operation modes are	Pulse output instruction	-				
$\begin{aligned} & \frac{0}{\mathbf{p}} \\ & \frac{\stackrel{1}{0}}{\mathbf{I}} \end{aligned}$	supported, the module is suitable for 2 -axis simple positioning.	Positioning instruction	DSZR, DDSZR, DVIT, DDVIT, DRVTBL, DRVMUL, DABS, PLSV, DPLSV, DRVI, DDRVI, DRVA, and DDRVA instructions				

[^51]Pulse output module

*1: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
*2 : Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).
Simple motion module

Model/feature		Items	Function		Compatible CPU module				
		FX5-40SsC-S	FX5-80SSC-S	FX5S	FX5UU	FX5U	FX5UC		
	FX5-40SSC-S FX5-80SSC-S High-speed/high-precision positioning can be achieved in combination with MELSERVO-J4 series servo amplifiers which are compatible with SSCNET III/H. Parameter settings and table operation settings can easily be made with GX Works3.		Number of control axes	4 axes	8 axes	\times	O*1	\bigcirc	O*2
		Interpolation function	2-axis, 3 -axis, 4 -axis linear interpolation 2-axis circular interpolation PTP (Point To Point) control, Trajectory control (both linear and arc), Speed control, Speed-position switching control, Position-speed switching control, Speed-torque control						
		Control system							
		Mark detection function	Regular mode, Specif mode, Ring Buffer mo Mark detection signal: detection setting: 16	umber of Detections 4 points, mark gs					
		Digital oscilloscope function*3	Bit data: 16 ch , Word	16 ch					
		Servo amplifier connection method	SSCNET III/H						
		Manual pulse generator connection	Possible to connect 1						
		Positioning program	Sequence program						
		Number of occupied input/output points	8 points (Either input or outp	ailable for counting.)					

*1: Only 1 module may be connected per system.
*2: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
*3: 8 ch word data and 8 ch bit data can be displayed in real time.

Motion module

*1: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
*2: 8 ch word data and 8 ch bit data can be displayed in real time.

List of positioning operation modes
To confirm detailed operation of each module, refer to manuals of the product.

Positioning instruction Operation pattern	Details	$\begin{aligned} & \text { FX5S, } \\ & \text { FX5U, } \\ & \text { FX5UC } \end{aligned}$	FX5UJ	FX5-16ET/ES-H, FX5-16EIESS-H	$\begin{aligned} & \text { FX5-20PG-P, } \\ & \text { FX5-20PG-D } \end{aligned}$	FX3U-1PG	$\begin{aligned} & \text { FX5-40ssc-S, } \\ & \text { FX5-80ssc-S, } \\ & \text { FX5-40ssc-G, } \\ & \text { FX5-80ssc-G } \end{aligned}$
	While the forward rotation/ reverse rotation instruction input is ON , the motor performs forward rotation/ reverse rotation.	$\underset{* 1}{\circ}$	$\underset{* 1}{\circ}$	$\underset{* 1}{\bigcirc}$	\bigcirc	\bigcirc	\bigcirc
- Machine home position return	The module starts operation at a home position return speed according to the machine home position return start instruction and then outputs clear signal after the end of machine home position return.	$\underset{* 2}{\circ}$	$\stackrel{\bigcirc}{*}$	$\underset{* 2}{\bigcirc}$	$\underset{* 2 * 3}{\circ}$	$\underset{* 2 * 3}{\circ}$	$\underset{* 2 * 4}{\circ}$
- 1-speed positioning	The module starts operation at an operation speed according to start instruction and then decelerate and stops at a target position.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
- 2-speed operation (2-speed positioning)	The module moves at operation speed (1) for amount of movement (1) and then moves at operation speed (2) for amount of movement (2) according to start instruction.	$\underset{* 5}{\bigcirc}$	$\underset{* 5}{\bigcirc}$	$\underset{* 5}{\bigcirc}$	0	\bigcirc	\bigcirc
- Multi-speed operation	Multi-speed operation can be achieved by performing continuous trajectory control of multiple tables. The diagram at left shows continuous trajectory control of 3 tables.	$\underset{* 5}{\circ}$	$\underset{* 5}{\bigcirc}$	$\underset{* 5}{\bigcirc}$	\bigcirc	\times	\bigcirc
	When interrupt input is ON , the module decelerates and stops.	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\times
- Interrupt and 1-speed positioning (interrupt and 1 -speed pitch feed)	When the interrupt input turns ON after the start of operation, the object moves the specified distance and decelerates to stop.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
- Interrupt and 2-speed positioning (interrupt and 2-speed pitch feed)	When the interrupt input (1) turns ON , the speed is changed to the second speed. In addition, when the interrupt input (2) turns ON, the object moves the specified distance and decelerates to stop.	$\underset{* 6}{\circ}$	$\underset{* 6}{\circ}$	$\stackrel{\bigcirc}{*}$	$\underset{* 7}{\circ}$	\bigcirc	$\underset{* 7}{\circ}$

[^52]| Positioning instruction Operation pattern | Details | $\begin{aligned} & \text { FX5S, } \\ & \text { FX5U, } \\ & \text { FX5UC } \end{aligned}$ | FX5UJ | FX5-16ET/ES-H, FX5-16ETESS-H | $\begin{aligned} & \text { FX5-2OPG-P, } \\ & \text { FX5-20PG-D } \end{aligned}$ | FX3U-1PG | $\begin{aligned} & \text { FX5-40ssc-S, } \\ & \text { FX5-80ssc-S, } \\ & \text { FX5-40ssc-G, } \\ & \text { FX5-80ssc-G } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Interrupt 2-speed positioning (external instruction positioning) | When the interrupt input turns ON , the speed is changed to the second speed. When an external instruction is turned ON , the object decelerates to stop. | $\stackrel{\circ}{*}$ | $\stackrel{\circ}{*}$ | $\underset{*}{\circ}$ | \times | \bigcirc | \times |
| Variable speed operation | The module operates at the operation speed specified from PLC. | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| - Linear interpolation | The module moves to the target position at the specified speed.
 For the speed, composite speed and reference axis speed are selectable. | $\stackrel{\bigcirc}{* 2}$ | \times | $\stackrel{\bigcirc}{*}$ | \bigcirc | \times | \bigcirc |
| Circular interpolation | The module moves to the target position (x, y) at the peripheral speed according to circular interpolation control. Operation can be performed according to sub point designation or center point designation. | \times | \times | \times | \bigcirc | \times | \bigcirc |
| - Table operation | | | | | | | |
| No. Position Speed $\ldots . .$.
 1 200 500
 2 500 1000
 3 1000 2000 | A table is available to create a program for positioning control. | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \bigcirc |
| - Pulse generator input operation | External pulse can be input from the manual pulse generator input terminal. Synchronous ratio operation using an encoder etc., can be performed. | \times | \times | \times | \bigcirc | \times | \bigcirc |

[^53]Built-in positioning function of FX5S/FX5UJ/FX5U/FX5UC CPU module

Features

1) Can position up to 4 axes*2 using transistor outputs (YO, Y1, Y2 and Y3) of the CPU module.
2) Can output pulse trains of 200 kpps*3 maximum.
3) Can realize a reasonable system configuration because the intelligent function module for positioning is not required.
4) Change of the speed and positioning address can be made during positioning operation.
5) Supports the simple linear interpolation operation.*4
*1: When the pulse output mode is CW/CCW, the 2 axes.
*2: Up to 3 axes with the FX5UJ CPU module

* 3: Up to 100 kpps with the FX5S CPU module
* 4: Supported only by the FX5S/FX5U/FX5UC CPU module.

Specifications

Items	Specifications Number of control axes FX5UJ: 3 axes FX5S, FX5U, FX5UC: 4 axes*1 (Simple linear interpolation possible by 2-axis simultaneous start)
Positioning program	FX5S: 100 kpps (100 kpps in pulses) FX5UJ, FX5U, FX5UC: 200 kpps (200 kpps in pulses)
Compatible CPU module	Sequence program, Table operation
Pulse output instruction	Transistor output type
Positioning instruction	DSZ and DPLSY instructions DDRV, DDSZR, DVIT, DDVIT, TBL, DRVTBL, DRVMU, and DDRVA instructions

[Example of Packaging System Using built-in positioning]

FX5-16ET/E \square-H high-speed pulse input/output module

Features

1) Can extend the high-speed counter function (2 ch) and positioning function (2 axes) at the same time, and realize a reasonable system configuration.
2) Offers easy extension in the same way as the positioning function built in the CPU module.
3) Can output pulse trains of 200 kpps maximum.

Specifications

Items	Specifications
Number of control axes	2 axes (Simple linear interpolation by 2-axis simultaneous start)
Maximum frequency	200 kpps (200 kpps in pulses)
Positioning program	Sequence program, Table operation
Output type	FX5-16ET/ES-H: Transistor output (Sink type) FX5-16ET/ESS-H: Transistor output (Source type)
Pulse output instruction	-
Positioning instruction	DSZR, DDSZR, DVIT, DDVIT, DRVTBL, DRVMULL, DABS, PLSV, DPLSV, DRVI, DDRVI, DRVA, and DDRVA instructions
Power supply	5 V DC, 100 mA (internal power supply) 24 V DC, 125 mA (supplied from service power supply or external power supply)
Compatible CPU module	FX5UJ, FX5U, FX5UC from Ver. 1.030 Connection with FX5UC CPU module requires connector conversion module $($ FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V)..
Applicable engineering tool	FX5UJ: GX Works3 Ver. 1.085P or later FX5U, FX5UC: GX Works3 Ver. 1.025B or later
Number of connectable modules	FX5UJ, FX5U, FX5UC: Up to 4 modules External dimensions W \times H \times D (mm) MASS (Weight): kg
$40 \times 90 \times 83$	

4) Allows terminals not using the highspeed counter function or positioning function to be used for generalpurpose inputs/outputs.

FX5-20PG-P 2-axis pulse train positioning module (transistor output) FX5-20PG-D 2-axis pulse train positioning module (differential line driver output)

Features

1) By analyzing the positioning data in advance, the module can start the positioning at a higher speed than the normal positioning start.
2) It can easily draw the smooth path by combining linear interpolation, 2-axis circular interpolation, and continuous path control in a point table method program.
3) Acceleration/deceleration processing can be selected from two methods of trapezoidal and S-shaped acceleration/deceleration, and four kinds each of acceleration time and deceleration time can be set. In the case of S-shaped acceleration/ deceleration, the S-character ratio can also be set.
\checkmark Specifications

Items	Specifications	
	FX5-20PG-P	FX5-20PG-D
Number of control axes	2 axes	
Control unit	mm , inch, degree, pulse	
Output type	Transistor	Differential line driver
Command speed	200 kpps	5 Mpps
Pulse output	Output signal: PULSE/SIGN mode, CW/ CCW mode, phase A/B (4 multiplication), phase A/B (1 multiplication) Output terminal: Transistor 5 to 24 V DC 50 mA or less	Differential line driver equivalent to AM26C31
External I/O specifications	Input: READY/STOP/FLS/RLS/PG024/DOG/CHG terminals: 24 V DC 5 mA , PULSER A/PULSER B terminals: 5 V DC 14 mA Zero point signal PG05 terminal: 5 V DC 5 mA Output: CLEAR (deviation counter): 5 to 24 V DC 100 mA or less Circuit insulation: Photocoupler	
Power supply	24 V DC +20\%, -15\% 120 mA (external power supply)	24 V DC +20\%, -15\% 165 mA (external power supply)
Compatible CPU module	FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).	
	FX5UJ: GX Works3 Ver. 1.060N or later	
engineering tool	FX5U, FX5UC: GX Works3 Ver. 1.035M or later	FX5U, FX5UC: GX Works3 Ver. 1.050C or later
Number of occupied I/O points	8 points (Either input or output is available for counting.)	
Number of connectable modules	FX5UJ: Up to 8 modules FX5U: Up to 16 modules FX5UC: Up to 15 modules	
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$50 \times 90 \times 83$	
MASS (Weight): kg	Approx. 0.2	

Option

Connector for external devices (40-pin)

Model name	Type
A6CON1	Soldered type (straight protrusion)
A6CON2	Crimped type (straight protrusion)
A6CON4	Soldered type (both straight/inclined protrusion type)

External device connection connectors and connection cables etc. are not included with the product.
Please arrange them by the customer.

Features

1) The module is equipped with 7 operation modes necessary for simple positioning control.
2) Pulse train of up to 200 kpps can be output.
3) Speed and target address can be changed during positioning operation to perform operation for each process.
4) Approximate S-curve acceleration/ deceleration is supported. Smooth high-speed operation can be performed.

Specifications

Items	Specifications
Number of control axes	1 axis
Command speed	200 kpps (instruction unit can be selected from among $1 \mathrm{pps}, \mathrm{cm} / \mathrm{min}$, inch/min, and $10 \mathrm{deg} / \mathrm{min}$)
Set pulse	$-2,147,483,648$ to $2,147,483,647$ (Instruction unit can be selected from pulse, $\mu \mathrm{m}$, mdeg, 10^{-4} inch. In addition, magnification can be set for position data.)
Pulse output	Output signal format: Forward rotation (FP)/reverse rotation (RP) pulse or pulse (PLS)/ direction (DIR) can be selected. Pulse output terminal: Transistor output 5 to 24 V DC, 20 mA or less (Photocoupler, with indication of operation by LED)
External input/output specification	Input: For STOP/DOG terminal, 24 V DC, 7 mA For zero-point signal PGO terminal, 5 to 24 V DC, 20 mA or less Output: For each of FP (forward rotation), RP (reverse rotation), and CLR (clear) terminals, 5 to 24 V DC, 20 mA or less
Driving power	For input signal: $24 \mathrm{VDC}, 40 \mathrm{~mA}$ For pulse output: 5 to 24 V DC, power consumption 35 mA or less
Control power	5 V DC, 150 mA (supplied from PLC via extension cable)
Compatible CPU module	FX5U, FX5UC: Compatible from initial product Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).
Number of occupied input/output points	8 points (Either input or output is available for counting.)
Communication with PLC	Carried out by FROM/TO instruction via buffer memory (buffer memory can directly be specified)
Number of connectable modules	FX5U : Up to 8 modules when FX3U extension power supply modules are used Up to 6 modules when FX3U extension power supply modules are not used FX5UC : Up to 6 modules
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{~mm})$	$43 \times 90 \times 87$
MASS (Weight): kg	Approx. 0.2

Advanced Synchronous Control

FX5-40SSC-S and FX5-80SSC-S type simple motion modules are intelligent function modules compatible with SSCNET III/H, while the FX5-40SSC-G and FX5-80SSC-G type motion modules are compatible with CC-Link IE TSN.
They can be used for positioning control by servo motor via SSCNET III/H or CC-Link IE TSN-compatible servo amplifiers. For positioning control, refer to the relevant manual.

FX5-40SSC-S type simple motion module FX5-80SSC-S type simple motion module

Features

FX5-40SSC-S and FX5-80SSC-S are SSCNET III/H compatible modules provided with 4-/8-axis positioning function.
It can easily draw the smooth path by combining linear interpolation, 2-axis circular interpolation, and continuous path control in a point table-based program.
In "synchronous control", "parameter for synchronous control" is set and synchronous control is started for each output axis to perform control in synchronization with the input axes (servo input axis, instruction generation axis*1, and synchronous encoder axis).
*1: The instruction generation axis is used only for instruction generation. It can be controlled independently as an axis connected to a servo amplifier. (It is not counted as a control axis.)

Specifications

Items		Specifications	
		FX5-40SSC-S	FX5-80SSC-S
Number of control axes		4 axes	8 axes
Operation cycle [ms]		0.888/1.777	
Interpolation function		Linear interpolation (maximum 4 axes), two-axis circular interpolation	
Control system		PTP (Point To Point) control, Trajectory control (both linear and arc), Speed control, Speed-position switching control, Position-speed switching control, Speed-torque control	
Acceleration/deceleration process		Trapezoidal acceleration/deceleration, S-curve acceleration/deceleration	
Synchronous control	Input axis	Servo input axis, synchronous encoder axis, command generation axis	
	Output axis	Cam shaft	
Cam control	Number of registration*2	Up to 64 cams	Up to 128 cams
	Cam data type	Stroke ratio data type, Coordinate data type	
	Cam auto-generation	Cam auto-generation for rotary cutter	
Control unit		mm, inch, degree, pulse	
Number of positioning data		600 data (positioning data No. 1 to 600)/ axis (Can be set with MELSOFT GX Works3 or a sequence program.)	
Backup		Parameters, positioning data, and block start data can be saved on flash ROM (battery-less backup)	
Positioning control	Linear control	1-axis linear control, 2-axis linear interpolation control, 3-axis linear interpolation control, 4-axis linear interpolation control*3 (Composite speed, Reference axis speed)	
	Fixed-pitch feed control	1-axis fixed-pitch feed, 2-axis fixed-pitch feed, 3-axis fixed-pitch feed, 4-axis fixed-pitch feed*3	
	2-axis circular interpolation	Sub point designation, center point designation	
	Speed control	1-axis speed control, 2-axis speed control*3, 3-axis speed control*3, 4-axis speed control*3	
	Speed-position switching control	INC mode, ABS mode	
	Position-speed switching control	INC mode	
	Current value change	Positioning data, Start No. for a current value changing	
	NOP instruction	Provided	
	JUMP instruction	Unconditional JUMP, Conditional JUMP	
	LOOP, LEND	Provided	
	High-level positioning control	Block start, Condition start, Wait start, Simultaneous start, Repeated start	
Servo amplifier connection method		SSCNET III/H	
Maximum overall cable distance [m]		400	
Maximum distance between stations [m]		100	
24 V DC external current consumption		250 mA	
Compatible CPU module		FX5UJ, FX5U, FX5UC: Compatible from initial product	
Applicable engineering tool		FX5UJ: GX Works3 Ver. 1.060N or later FX5U, FX5UC: GX Works3 Ver. 1.030G or later	
Number of occupied input/output points		8 points (Either input or output is available for counting.)	
Number of connectable modules		FX5UJ: Up to 1 module (FX5-40SSC-S and FX5-80SSC-S cannot be used simultaneously.) FX5U: Up to 16 modules FX5UC: Up to 15 modules	
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$50 \times 90 \times 83$	
MASS (Weight): kg		Approx. 0.3	

*2: The number of registered cams varies depending on the memory capacity, cam resolution, and the number of coordinates.
*3: Only the reference axis speed is effective for the interpolation speed specification method.

FX5-40SSC-G type motion module

 FX5-80SSC-G type motion module
Features

FX5-40SSC-G and FX5-80SSC-G are CC-Link IE TSN compatible modules provided with 4 -/8-axis positioning function.
The functions of the CC-Link IE TSN compatible MELSERVO-J5 series of high-performance servo amplifiers can be used. Also the programs of the simple motion modules can be used.

Specifications

Items		Specifications	
		FX5-40SSC-G	FX5-80SSC-G
Number of control axes		4 axes	8 axes
Operation cycle [ms]		0.500/1.000/2.000/4.000	
Interpolation function		Linear interpolation (maximum 4 axes), two-axis circular interpolation	
Control system		PTP (Point To Point) control, Trajectory control (both linear and arc), Speed control, Speed-position switching control, Position-speed switching control, Speed-torque control	
Acceleration/deceleration process		Trapezoidal acceleration/deceleration, S-curve acceleration/deceleration	
Synchronous control		Synchronous encoder input, command generation axis, cam, phase compensation, cam auto-generation	
Cam control	Number of registration*1	Up to 128 cams	
	Cam data type	Stroke ratio data type, Coordinate data type	
	Cam auto-generation	Cam auto-generation for rotary cutter	
Control unit		mm, inch, degree, pulse	
Number of positioning data		600 data (positioning data No. 1 to 600)/ axis (Can be set with MELSOFT GX Works3 or a sequence program.)	
Backup		Parameters, positioning data, and block start data can be saved on flash ROM (battery-less backup)	
Positioning control	Linear control	1-axis linear control, 2-axis linear interpolation control, 3-axis linear interpolation control, 4-axis linear interpolation control*2 (Composite speed, Reference axis speed)	
	Fixed-pitch feed control	1-axis fixed-pitch feed, 2-axis fixed-pitch feed, 3-axis fixed-pitch feed, 4-axis fixed-pitch feed*2	
	2-axis circular interpolation	Sub point designation, center point designation	
	Speed control	1-axis speed control, 2-axis speed control*2, 3-axis speed control*2, 4-axis speed control*2	
	Speed-position switching control	INC mode, ABS mode	
	Position-speed switching control	INC mode	
	Current value change	Positioning data, Start No. for a current value changing	
	NOP instruction	Provided	
	JUMP instruction	Unconditional JUMP, Conditional JUMP	
	LOOP, LEND	Provided	
	High-level positioning control	Block start, Condition start, Wait start, Simultaneous start, Repeated start	
Servo amplifier connection method		CC-Link IE TSN	
Maximum overall cable distance [m]	Line topology		$\begin{array}{\|l} \hline 2300 \\ \text { (when } 24 \text { modules are connected) } \end{array}$
	Others	Depends on the system configuration.	
Maximum distance between stations [m]		100	
24 V DC external current consumption		240 mA	
Compatible CPU module		FX5U, FX5UC: Ver. 1.230 or later	
Applicable engineering tool		FX5U, FX5UC: GX Works3 Ver. 1.072A or later	
Number of occupied input/output points		8 points (Either input or output is available for counting.)	
Number of connectable modules		FX5U, FX5UC: Up to 4 module	
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$50 \times 90 \times 83$	
MASS (Weight): kg		Approx. 0.3	

Advanced Synchronous Control

memo

Network/Communication/ Information-sharing

MELSEC iQ-F Series can support not only high-speed networks like CC-Link but also other networks corresponding to control contents such as Ethernet , MODBUS, Sensor Solution, and PROFIBUS-DP. In addition, communication function to easily establish simple data link between MELSEC iQ-F Series and to RS-232C and RS-485 devices is also supported.
\diamond CC-Link
Examples of connection are shown.

[^54]
Network/Communication/Information-sharing

Types				Contents	Total extension length or transmission distance	Station types	Compatible CPU module				
				FX5S			FX5US	FX5U	FXSUC		
CC-Link V2 (CC-Link V2 system with MELSEC iQ-F Series master)					- Outline This is a CC-Link V2 system where MELSEC iQ-F Series is used as master station. CC-Link V2 system can be established using just MELSEC iQ-F Series. Ver. 1.10 is also supported. - Scale Remote I/O station: max. 14***2 modules Intelligent device station or remote device station: max. 14**3 modules - Scope Distributed control and central management of lines, configuration of small-scale and high-speed network, etc.	Max. 1200 m	$\begin{array}{\|l} \text { Master station } \\ \text { (FX5-CCL-MS) } \end{array}$	\times	\bigcirc	\bigcirc	O*4
MELSEC iQ-F Series	CC-Link master station		Partner manufacturer Sensors, solenoid valves etc.								
Termination resistance Termination resistance				Master station (FX3U-16CCL-M)			\times	\times	O*5	O*5	
				Intelligent device station (FX3U-64CCL)			\times	\times	O*5	O*5	
$\begin{aligned} & \text { MELSEC } \\ & \text { iQ-F Series } \end{aligned}$	Intellige device station	CC-Link remote I/O	Mitsubishi electric inverter, $A C$ servo, etc.								
CC-Link V2 (CC-Link V2 system with MELSEC iQ-R Series master)				- Outline MELSEC iQ-F series can be connected as an intelligent device station to the CC-Link V2 system in which the MELSEC iQ-R series etc. is the master station. - Scale Max. 64 modules - Scope Distributed control and central management of lines, information transfer from the host network, etc.	Max. 1200 m	Intelligent device station (FX5-CCL-MS)	\times	\bigcirc	\bigcirc	O*4	
MELSEC iQ-R Series	CC-Link master station		Partner manufacturer Sensors, solenoid valves etc								
				Intelligent device station (FX3U-64CCL)		\times	\times	O*5	O*5		
MELSEC iQ-F Series	Intelligent device station	CC-Link remote $/ \mathrm{O}$	Mitsubishi electric inverter, AC servo, etc								

*1: This number is applicable when FX5-CCL-MS is used as the master station. The maximum number is 8 when FX3U-16CCL-M is used as the master station.
*2: Up to 6 stations when connected with the FX5UJ.
*3: Up to 8 stations when connected with the FX5UJ.

* 4: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
*5: Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).
Ethernet
Examples of connection are shown.

[^55]
EtherNet/IP

Examples of connection are shown.

*: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
\checkmark BACnet

Examples of connection are shown.

[^56]
Network/Communication/Information-sharing

Examples of connection are shown.

*1: FX5S, FX5UJ CPU module does not have a built-in RS-485 port.
*2: No expansion board can be used in FX5UC CPU module

* 3 : The communication protocol support function is used.

Sensor Solution
Examples of connection are shown.

Types				Contents	Total extension length or transmission distance	Compatible CPU module				
				FX5S		FX5UJ	FX5U	FX5UC		
FX5-ASL-MFX5UJ/ FX5U/ FX5UC	\square	AnyWireASLINK			- Outline This is the master module of the AnyWireASLINK system. A sensor saving wiring system of AnyWireASLINK system can be constructed. - Scale Max. 128 modules - Scope Distributed control of lines, central management of sensors, etc.	Max. 200 m	\times	\bigcirc	\bigcirc	○*1
FX3U-128ASL-M FX5U/FX5UC Bus co		AnyWireASLINK		- Outline This is the master module of the AnyWireASLINK system. A sensor saving wiring system of AnyWireASLINK system can be constructed. - Scale Max. 128 modules - Scope Distributed control of lines, central management of sensors, etc.	Max. 200 m	\times	\times	○*2	○*2	

*1: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
*2: Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).

Examples of connection are shown.

[^57]\diamond General-purpose communication/peripheral device communication
Examples of connection are shown.

Types	Contents	Distance	Compatible CPU module			
			FX5S	FX5UJ	FX5U	FX5UC
RS-232C Communication (Communication between FX5 and RS-232C device)	- Outline Data can be transferred from various devices with built-in RS-232C interface by non-protocol communication. - Scale 1:1 - Scope Data transfer from PCs, code readers, printers, various measurement devices, etc.	Max. 15 m	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }^{* 2}$
RS-485 Communication (Communication between FX5 and RS-485 device) RS-485 Device - Measuring instrument, etc.	- Outline Data can be transferred from various devices with built-in RS-485 interface by non-communication protocol. - Scale 1:1 (1:n) - Scope Data transfer from PCs, code readers, printers, various measuring instrument, etc.	Max. 50 m or 1200 m	O*1	O*1	\bigcirc	○*2
Addition of peripheral device connection port (Connection between FX5 and peripheral device)	- Outline RS-232C or RS-422 port (GOT port) can be added. - Scale 1:1 - Scope Simultaneous connection of two HMI, etc.	[RS-422] Depends on peripheral devices to be connected. [RS-232C] Max. 15 m	\bigcirc	\bigcirc	\bigcirc	○*2
USB communication	- Outline It can be connected with an engineering tool (GX Works3, etc.) by connecting the builtin USB port in the FX5S/FX5UJ CPU module directly with a PC. - Scale Maximum number of connected: 1 module - Scope Programming communication using engineering tools	-	\bigcirc	\bigcirc	\times	\times

[^58]
*1: FX5S, FX5UJ CPU module does not have a built-in RS-485 port.
*2: No expansion board can be used in FX5UC CPU module.
OPC UA communication
Examples of connection are shown.

[^59]
CC-Link IE TSN

CC-Link IE TSN supports TCP/IP communications and applies it to industrial architectures through its support of TSN enabling real-time communications. FX5-CCLGN-MS is an intelligent function module intended for connecting the FX5UJ/ FX5U/FX5UC CPU module as a master or local station of the CC-Link IE TSN.

FX5-CCLGN-MS master/local module for CC-Link IE TSN

Features

1) The FX5UJ/FX5U/FX5UC CPU module can be connected as a master or local station of the CCLink IE TSN.
2) Data can be transferred between the FX5UJ/FX5U/FX5UC CPU module and the FX5-CCLGN-MS via buffer memory by using the FROM/ TO instruction. Data can be used in programs through replacement with internal devices (X, Y, B, W, SB, SW, etc.) via the automatic refresh function.
*1: The maximum number of points for all link devices may not be used simultaneously depending on the number of device stations, or the number of points and assignments of the link devices that are set in the "Network Configuration Settings" of the "Basic Settings".
*2: Supported by the FX5-CCLGN-MS Ver. 1.010 or later.
*3: The maximum number of connectable stations (61) includes the master station. When connecting multiple master stations, such as the FX5-CCLGN-M and the FX5-40/80SSC-G, which use device station parameters for the CPU module, the total number of device stations must be less than or equal to the number of device station parameter files that can be saved in the CPU module. For details about the number of device station parameter files that can be saved in the CPU module, refer to the following manual.
\rightarrow MELSEC iQ-F FX5 User's Manual (Application)
Network topology

Specifications

Items			Specifications
Station type			Master or local station
Station number			- Master station: 0 - Local station: 1 to 120
Maximum number of link points per network		RX	16 K points (16384 points, 2 K bytes)
		RY	16 K points (16384 points, 2 K bytes)
		RWr	8 K points (8192 points, 16 K bytes)
		RWw	8 K points (8192 points, 16 K bytes)
Maximum number of link points per station*1	Master station	RX	8 K points (8192 points, 1 K bytes)
		RY	8 K points (8192 points, 1 K bytes)
		RWr	4 K points (4096 points, 8 K bytes)
		RWw	4 K points (4096 points, 8 K bytes)
	Local station	RX	16 K points (16384 points, 2 K bytes)
		RY	16 K points (16384 points, 2 K bytes)
		RWr	8 K points (8192 points, 16 K bytes)
		RWw	8 K points (8192 points, 16 K bytes)
Communication speed			1 Gbps, 100 Mbps*2
Minimum synchronization cycle			$250.00 \mu \mathrm{~s}$
CC-Link IE TSN Class			CC-Link IE TSN Class B device
Maximum number of connectable stations	When used as a master station		61*3
	When used as a local station		121
Station-based data assurance	When used as a master station		61*3
	When used as a local station		121
Connection cable			For details, refer to MELSEC iQ-F FX5 User's Manual (CC-Link IE TSN).
Overall cable distance	Line topology		12000 m (when 121 stations are connected)
	Others		Depends on the system configuration.
Maximum station-to-station distance			100 m
Network number setting range			1 to 239
Network topology			Line topology, star topology (coexistence of line topology and star topology is also possible)
Communication method			Time sharing method
Multicast filter			Supported
Transient transmission capacity			1920 bytes
Compatible CPU module			FX5UJ: Ver. 1.040 or later FX5U, FX5UC: Ver. 1.210 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Applicable engineering tool			FX5UJ: GX Works3 Ver. 1.090U or later FX5U, FX5UC: GX Works3 Ver. 1.065T or later
Number of occupied I/O points			8 points (Either input or output is available for counting.)
Number of connectable modules			Only 1 module can be connected to CPU module for each station type - Master station: 1 module - Local station: 1 module
Power supply			24 V DC 220 mA (external power supply)
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$			$50 \times 90 \times 83$
MASS (Weight): kg			Approx. 0.3

[^60]
CC-Link IE Field

CC-Link IE Field is a high-speed (1 Gbps), high capacity open field network using Ethernet (1000BASE-T).
FX5-CCLIEF is an intelligent function module to connect the FX5 CPU module as an intelligent device station to a CC-Link IE Field Network.

FX5-CCLIEF intelligent device station for CC-Link IE Field network

Features

MELSEC iQ-F Series modules can be connected as intelligent device stations in the CC-Link IE Field network.
\checkmark Specifications

Items		Specifications
Station type		Intelligent device station
Station number		1 to 120 (set by parameter or program)
Communication speed		1 Gbps
Network topology		Line topology, star topology (coexistence of line topology and star topology is also possible), and ring topology
Maximum station-to-station distance		100 m (conforms to ANSI/TIA/EIA-568-B (Category 5e))
Cascade connection		Max. 20 stages
Communication method		Token passing
Maximum number of link points*1	RX	384 points, 48 bytes
	RY	384 points, 48 bytes
	RWr	1024 points, 2048 bytes*2
	RWw	1024 points, 2048 bytes*2
Compatible CPU module		FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.030 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Applicable engineering tool		FX5UJ: GX Works3 Ver. 1.060N or later FX5U, FX5UC: GX Works3 Ver. 1.025B or later
Number of occupied I/O points		8 points (Either input or output is available for counting.)
Communication with PLC		Done by FROM/TO instruction via buffer memory (buffer memory can be directly specified)
Number of connectable modules		FX5UJ, FX5U, FX5UC: Max. 1 module
Power supply		5 V DC 10 mA (internal power supply) 24 V DC 230 mA (external power supply)
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$50 \times 90 \times 103$
MASS (Weight): kg		Approx. 0.3

*1: The maximum number of link points that a master station can assign to one FX5-CCLIEF module.
*2: 256 points (512 bytes) when the mode of the master station is online (High-Speed Mode).

Network topology

[^61]
CC-Link V2

CC-Link V2 is an open network enabling connection of various FA equipment.
A master module to set MELSEC iQ-F Series as CC-Link master, as well as an interface to connect as a CC-Link device are available.

FX5-CCL-MS type CC-Link system master/intelligent device module

Features

1) Since this module has both functions, the master station and intelligent device station, it can be used as either of them by switching with parameters.
2) When FX5U/FX5UC CPU module is used, parameters from the program can be set*1.
3) When using the module as an intelligent device station, the transmission speed can be set to auto-tracking. Since the module tracks the transmission speed of the master station automatically, there is no setting mistake.
4) Supporting the other station access function, the module can use GX Works3 connected to the local station to monitor program writing and reading and devices of PLCs of other stations in the same network. This function thus eliminates the need for connecting GX Works3 to individual MELSEC iQ-F series and reduces man-hours.

Specifications

	Item	Specifications									
Compatible functions		Master station or intelligent device station									
CC-Link supported version		Ver. 2.00 and Ver. 1.10									
Transmission Speed		- Master station: $156 \mathrm{kbps} / 625 \mathrm{kbps} / 2.5 \mathrm{Mbps} / 5 \mathrm{Mbps} / 10 \mathrm{Mbps}$ - Intelligent device station: $156 \mathrm{kbps} / 625 \mathrm{kbps} / 2.5 \mathrm{Mbps} / 5 \mathrm{Mbps} / 10 \mathrm{Mbps} /$ auto-tracking									
Station number		- Master station: 0 - Intelligent device station: 1 to 64									
Connectable station type (at the time of master station)		Remote I/O station, remote device station, intelligent device station (local station and standby master station cannot be connected)									
Maximum overall cable length		1200 m (varies depending on transmission speed)									
Maximum number of connected stations (at the time of master station)		- FX5UJ CPU module - Remote I/O stations: 6 maximum (The total number of I/O points of remote I/O station is 192 or less.) - The total number of intelligent device stations + remote device stations: 8 maximum (The total number of I/O points of intelligent device station + remote device station is 256 or less.) - \quad FX5U/FX5UC CPU module*2 - Remote I/O stations: 14 maximum (The total number of I/O points of remote I/O station is 448 or less.) - The total number of remote device stations + intelligent device stations: 14 maximum (The total number of I/O points of intelligent device station + remote device station is 448 or less.)									
Number of occupied stations (at the time of intelligent device station)		1 to 4 stations									
Maximum number of link points per system*2	CC-Link Ver. 1	- \quad FX5UJ CPU module - Remote I/O (RX, RY): 448 points (remote I/O station: 192 points*3 + remote device stations and intelligent device stations: 256 points) - Remote register (RWw): 32 points - Remote register (RWr): 32 points - FX5U/FX5UC CPU module*2 - Remote I/O (RX, RY): 896 points (remote I/O station: 448 points*3 + remote device stations and intelligent device stations: 448 points) - Remote register (RWw): 56 points - Remote register (RWr): 56 points									
	CC-Link Ver. 2	- FX5UJ CPU module - Remote I/O (RX, RY): 448 points (remote I/O station: 192 points*3 + remote device stations and intelligent device stations: 256 points) - Remote register (RWw): 64 points - Remote register (RWr): 64 points - $\mathrm{FX} 5 \mathrm{U} / \mathrm{FX} 5 \mathrm{C}$ CPU module*2 - Remote I/O (RX, RY): 896 points (remote I/O station: 448 points*3 + remote device stations and intelligent device stations: 448 points) - Remote register (RWw): 112 points - Remote register (RWr): 112 points									
		CC-Link Ver. 1		CC-Link Ver. 2							
Number of link points*2	Extended cyclic setting			Single		Double		Quadruple		Octuple	
	Number of occupied stations	Remote I/O	Remote register								
	1 station occupied	RX, RY: 32 points (16 points)*4	RWw: 4 points RWr: 4 points	RX, RY: 32 points (16 points)*4	RWw: 4 points RWr: 4 points	RX, RY: 32 points (16 points)*4	RWw: 8 points RWr: 8 points	RX, RY: 64 points (48 points)*4	RWw: 16 points RWr: 16 points	$\begin{aligned} & \text { RX, RY: } 128 \\ & \text { points }{ }^{* 5} \\ & \left(112 \text { points) }{ }^{* 4 * 5}\right. \end{aligned}$	RWw: 32 points*5 RWr: 32 points**
	2 stations occupied	RX, RY: 64 points (48 points)*4	RWw: 8 points RWr: 8 points	RX, RY: 64 points (48 points)*4	RWw: 8 points RWr: 8 points	RX, RY: 96 points $\left(80\right.$ points) ${ }^{* 4}$	RWw: 16 points RWr: 16 points	RX, RY: 192 points (176 points)*4	RWw: 32 points RWr: 32 points	RX, RY: 384 points ${ }^{* 5}$ $\left(368\right.$ points) ${ }^{* 4 * 5}$	RWw: 64 points*5 RWr: 64 points*5
	3 stations occupied	RX, RY: 96 points (80 points)*4	RWw: 12 points RWr: 12 points	RX, RY: 96 points (80 points) ${ }^{* 4}$	RWw: 12 points RWr: 12 points	RX, RY: 160 points (144 points) ${ }^{* 4}$	RWw: 24 points RWr: 24 points	$\begin{aligned} & \text { RX, RY: } 320 \\ & \text { points*5 } \\ & (304 \text { points })^{* * * 5} \end{aligned}$	RWw: 48 points ${ }^{* 5}$ RWr: 48 points ${ }^{* 5}$		
	4 stations occupied	RX, RY: 128 points (112 points)*4	RWw: 16 points RWr: 16 points	RX, RY: 128 points (112 points)*4	RWw: 16 points RWr: 16 points	RX, RY: 224 points (208 points) ${ }^{* 4}$	RWw: 32 points RWr: 32 points	$\begin{aligned} & \text { RX, RY: } 448 \\ & \text { points } \\ & (-))^{* 4 * 5} \end{aligned}$	RWw, RWr: 64 points*5 $(-)^{* 4 * 5}$		
Transmission cable		CC-Link Ver. 1.10 compatible CC-Link dedicated cable									

Item	Specifications
Compatible CPU module	FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Applicable engineering tool	FX5UJ: GX Works3 Ver. 1.060 N or later FX5U, FX5UC: GX Works3 Ver. 1.035M or later*1
Communication method	Broadcast polling method
Transmission format	HDLC compliant
Error control system	CRC ($\left.\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+1\right)$
Number of occupied I/O points	8 points (Either input or output is available for counting.)
Number of connectable modules	Only 1 module can be connected to CPU module for each station type •Master station: 1 module*6 • Intelligent device station: 1 module*7
Power supply	24 V DC +20\%, -15\% 100 mA (external power supply)
Accessories	FX2NC-100MPCB type power cable ($1 \mathrm{~m}, 3$-wire) Ver. 1.10 compatible CC-Link dedicated cable terminating resistor (2) $110 \Omega 1 / 2 \mathrm{~W}$ (color code: brown, brown, brown) Dust proof protection sheet (1)
External dimensions W $\times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$50 \times 90 \times 83$
MASS (Weight): kg	Approx. 0.3

* 1. To set the parameters from the buffer memory via the program in the FX5U/FX5UC CPU module GX Works3 of Ver. 1.065T or later is required
* 2: Number of links with FX5U/FX5UC CPU module Ver. 1.100 or later. GX Works3 Ver. $1.047 Z$ or later required. For details on the number of links with FX5U/FX5UC CPU module earlier than Ver. 1.100, refer to the following manual.
\rightarrow MELSEC iQ-F FX5 User's Manual (CC-Link)
* 3: The number of remote I/O points that can be used with the CPU module varies depending on the number of input/output points of the extension device.

For the limit of the number of I/O points, refer to the following manual.
\rightarrow MELSEC iQ-F FX5S/FX5UJ/FX5U/FX5UC User's Manual (Hardware)

* 4: The numbers in parentheses are the points that can be used when the module is an intelligent device station
* 5: Not applicable to the FX5UJ CPU module. For details, refer to the following manual.
\rightarrow MELSEC iQ-F FX5 User's Manual (CC-Link)
* 6: When using the FX5-CCL-MS as the master station, it cannot be used together with the FX3U-16CCL-M.
* 7: When using the FX5-CCL-MS as the intelligent device station, it cannot be used together with the FX3U-64CCL.

CC-Link master block FX3U-16CCL-M

Features

1) A master module setting MELSEC iQ-F Series as master station of CC-Link.
2) Up to 8 remote I/O stations and up to 8 remote device stations or intelligent device stations can be connected to a master station.

Specifications

[^62]
Example of system configuration with FX5U

The maximum number of remote I/O stations to be connected is 8 when connecting 80-point type CPU module and FX3U-16CCL-M.
The maximum number of remote I/O stations to be connected is less than 8 when the total number of points exceeds the maximum I/O points (512 points) due to the connection of l/O modules and intelligent function modules.

CC-Link interface block FX3U-64CCL

Features

MELSEC iQ-F Series can be connected as intelligent device stations of CC-Link.

Specifications

	Items	Specifications							
Isolation method		Photocoupler							
CC-Link compatible version		Ver. 2.00 (Ver. 1.10 compliance at the time of setting extension cyclic to 1 time; Buffer memory FX2N-32CCL compatibility also selectable)							
Station types		Intelligent device station							
Station No.		1 to 64 (setting by a rotary switch)							
No. of occupied stations/ Extension cyclic setting		Occupied 1 to 4 stations, set to 1 to 8 times (setting by a rotary switch). Refer to the table below for the details of allowable range.							
Transmission speed		$156 \mathrm{kbps} / 625 \mathrm{kbps} / 2.5 \mathrm{Mbps} / 5 \mathrm{Mbps} / 10 \mathrm{Mbps}$ (setting by a rotary switch)							
Transmission cable		Ver. 1.10 compatible CC-Link specific cable, CC-Link specific high-performance cable							
		CC-Link Ver. 1.10		CC-Link Ver. 2.00					
No. of link points	Extension cyclic setting	Single		Double		Quadruple		Octuple	
	No. of occupied stations* ${ }^{* 1}$	Remote I/O	Remote register						
	One station occupied	RX:32 points RY: 32 points	RWw: 4 points RWr: 4 points	RX:32 points RY: 32 points	RWw: 8 points RWr: 8 points	RX:64 points RY: 64 points	RWw: 16 points RWr: 16 points	RX:128 points RY: 128 points	RWw: 32 points RWr: 32 points
	Two stations occupied	RX:64 points RY: 64 points	RWw: 8 points RWr: 8 points	RX:96 points RY: 96 points	RWw: 16 points RWr: 16 points	RX:192 points RY: 192 points	RWw: 32 points RWr: 32 points		
	Three stations occupied	RX:96 points RY: 96 points	RWw: 12 points RWr: 12 points	RX: 160 points RY: 160 points	RWw: 24 points RWr: 24 points				
	Four stations occupied	RX: 128 points RY: 128 points	RWw: 16 points RWr: 16 points	RX:224 points RY: 224 points	RWw: 32 points RWr: 32 points		,		
Compatible CPU module		FX5U, FX5UC: Compatible from initial product Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).							
No. of occupied I/O points		8 points (Either input or output is available for counting.)							
Communication with PLC		Done by FROM/TO instruction via buffer memory (buffer memory can be directly specified)							
No. of connectable modules		FX5U, FX5UC: Max. 1 module*2							
External power supply	Power supply voltage/ Current consumption	24 V DC $+20 \% /-15 \%$ ripple (p-p) within 5\% (Electricity supplied from terminal block for power supply)/220 mA							
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$55 \times 90 \times 87$							
MASS (Weight): kg		Approx. 0.3							

*1: RX/RY for a high-order word of the last station of "Remote I/O" points is occupied as a system area.
*2: When using the FX3U-64CCL, it cannot be used together with the FX5-CCL-MS used as the intelligent device station.

Ethernet

Connecting FX5 to LAN (Local Area Network) via Ethernet enables various data communications and program maintenance.

- Outline of Functions

MELSOFT connection
The Ethernet-equipped module is connected to an engineering tool (GX Works3) without using a hub but only by one Ethernet cable. This connection communicates by only specifying the connection destination without setting an IP address.

*1: IEEE802.3x flow control is not supported.
*2: For maximum segment length (length between hubs), consult the manufacturer of the hub used.
*3: Number of stages that can be connected when a repeater hub is used. When a switching hub is used, check the specifications of the switching hub used.

* 4: The first device for MELSOFT connection is not included in the number of connections. (The second and the following devices are included.)
*5: The CC-Link IE Field Network Basic, FTP server, FTP client, SNTP client, Web server and simple CPU communication function are not included in the number of connections.
*6: The ports must comply with the IEEE802.3 100BASE-TX or IEEE802.3 10BASE-T standards.
$* 7$: If the first octet is 0 or 127, a parameter error $(2222 \mathrm{H})$ will occur. (Example: 0.0.0.0, 127.0.0.0, etc.)
*8: A straight cable can be used. If a personal computer or GOT and CPU module are directly connected, a cross cable can be used.

Built-in Ethernet communication

Features

1) The built-in Ethernet port can be used to connect to a PC or other device. In addition, the Ethernet communication port can handle seamless SLMP communication with the upper-level device.
2) Monitors and diagnoses the CPU module using a Web browser via connected network. Connect not only from a general-purpose browser on an Ethernet-connected PC but also from any generalpurpose browser on a tablet or smartphone connected to an Ethernet network.
\diamond Communication Specifications

Items		Specifications
		FX5S/FX5UJ/FX5U/FX5UC CPU module
Data transmission speed		100/10 Mbps
Communication mode		Full duplex/Half duplex*1
Interface		RJ45 connector
Transmission method		Base band
Maximum segment length		100 m (length between hub and node)*2
Cascade connection	100BASE-TX	Max. 2 stages*3
	10BASE-T	Max. 4 stages*3
Supported protocol		CC-Link IE Field Network Basic, MELSOFT connection, SLMP server (3E/1E frame), socket communications, communication protocol support, FTP server, FTP client, MODBUS/TCP communication, SNTP client, Web server (HTTP), simple CPU communication function
No. of connections		Total of 8 connections***5 (Up to 8 external devices are accessible to one CPU module at a time.)
Hub*1		A hub having 100BASE-TX or 10BASE-T port*6 can be used.
IP address*7		Initial value: 192.168.3.250
Circuit insulation		Pulse transformer insulation
Cable used**	When connecting 100BASE-TX	Ethernet cable of category 5 or higher (STP cable)
	When connecting 10BASE-T	Ethernet cable of category 3 or higher (STP cable)

Features

Specifications

1) Master module for using the MELSEC iQ-F Series as a CC-Link IE Field Network Basic master station. Co-existence with general-purpose Ethernet is also possible.
2) Up to 32 connectable remote stations for CC-Link IE Field Network Basic, with control for up to 2048 link points for RX/RY, and 1024 points for RWr/ RWw within the same network.
3) Grouping of remote stations for CC-Link IE Field Network Basic with configuration of a group number, with cyclic transmission possible for each group. Grouping stations according to the remote station standard response time makes it possible to suppress the influence of differences in the standard response times of each remote station.
4) This module is compatible with general-purpose Ethernet communication, such as SLMP communication and socket communication.

*1 : Maximum number of connected remote stations that FX5-ENET (master station) can manage. However, the maximum number of connectable modules varies depending on the number of stations occupied by a remote station.
*2 : Value for 1 -station occupation, 2-station occupation, 3-station occupation, or 4-station occupation.
*3: IEEE802.3x flow control is not supported.
$* 3$: IEEE802.3x flow control is not supported.
$* 4$: The ports must comply with the IEEE802.3 100BASE-TX standards.
$* 4$: The ports must comply with the IEEEE80
$* 5$: A straight/cross cable can be used.
*5 : A straight/cross cable can be used.
*6 : For maximum segment length (length between hubs), consult the manufacturer of the hub used.
*7 : This number applies when a repeater hub is used. When using a switching hub, check the number of cascaded stages with the manufacturer of the hub to be used.
*8 : For a compatible version of each protocol, refer to the following manual.
\rightarrow MELSEC iQ-F FX5-ENET User's Manual
*9 : The first device for MELSOFT connection is not included in the number of connections. (The second and the following devices are included.)
The CC-Link IE field network Basic is not included in the number of connections.

* 10: The ports must comply with the IEEE802.3 100BASE-TX or IEEE802.3 10BASE-T standards.
*11: Because the IP address is shared by two ports, only one address can be set.
*12: To use the MELSOFT connection, SLMP communication, simple CPU communication, and BACnet/IP, GX Works3 of Ver. 1.075D or later is required.

EtherNet/IP

EtherNet/IP is a network using Ethernet.
Standard Ethernet is used, so general-purpose Ethernet can be used simultaneously.

FX5-ENET/IP Ethernet module

Features

1) MELSEC iQ-F series module can be connected to the EtherNet/IP network. Coexistence with general-purpose Ethernet is also possible.
2) The EtherNet/IP communication parameters can be set with the dedicated setting tool (EtherNet/IP Configuration Tool for FX5-ENET/IP). The tool can be used not only to set the EtherNet/IP communication conditions, but also to detect EtherNet/IP devices on the network and set the EtherNet/IP communication conditions online.
3) Up to 32 modules can be connected to each of EtherNet/IP communication and general Ethernet communication networks.
4) This module is compatible with general-purpose Ethernet communication, such as SLMP communication and socket communication.

Specifications

Items				Specifications
EtherNet/IP communications	Class 1 communications	Communication format		Standard EtherNet/IP
		Number of connections		32
		Communication data size		1444 bytes (per connection)
		Connection type		Point-to-point, multicast
		RPI (communication cycle)		2 to 60000 ms
		PPS (communication processing performance)		3000 pps (case of 128 bytes)
	Class 3 communications**	Communication format		Standard EtherNet/IP
		Number of connections		32*2
		Connection type		Point-to-point
	UCMM communications	Communication format		Standard EtherNet/IP
		Number of connections (number of simultaneous executions)		32*2
		Communication data size		1414 bytes*3 *
		Connection type		Point-to-point
	Transmission specifications	Data transmission speed		100 Mbps
		Communication mode		Full-duplex
		Transmission method		Base band
		Interface		RJ45 connector
		IP version		IPv4 is supported.
		Maximum segment length		100 m (length between hub and node)*4
		Number of cascade connections	100BASE-TX	2 levels maximum*5
	Network topology			Star topology, line topology
	Hub*6			Hubs with 100BASE-TX ports*7 can be used.
	Connection cable*8		100BASE-TX	Ethernet cable of category 5 or higher (STP cable)
General-purpose Ethernet communication	Transmission specifications	Data transfer speed		100/10 Mbps
		Communication mode		Full-duplex or half-duplex*6
		Transmission method		Base band
		Interface		RJ45 connector
		Maximum segment length		100 m (length between hub and node)*4
		Number of cascade connections	100BASE-TX	2 levels maximum*5
			10BASE-T	4 levels maximum ${ }^{* 5}$
	Protocol type*9			MELSOFT connection, SLMP server (3E/1E frame), socket communication, simple CPU communication, BACnet/IP
	Number of connections			Total of 32 connections*10 (Up to 32 external devices can access one FX5-ENET/IP module at the same time.)
	Hub*6			Hubs with 100BASE-TX or 10BASE-T ports*11 can be used.
	Connection cable*8		100BASE-TX	Ethernet cable of category 5 or higher (STP cable)
			10BASE-T	Ethernet cable of category 3 or higher (STP/UTP cable)

Items	Specifications
Number of ports	$2^{* 12}$
Compatible CPU module	FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.110 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Applicable engineering tool	FX5UJ: GX Works3 Ver. 1.060N or later*13 FX5U, FX5UC: GX Works3 Ver. 1.050C or later*13 EtherNet/IP Configuration Tool for FX5-ENET/IP: Ver. 1.00A or later
Number of occupied I/O points	8 points (Either input or output is available for counting.)
Number of connectable modules	FX5UJ, FX5U, FX5UC: Up to 1 module
Power supply	$24 \mathrm{~V} \mathrm{DC}$,110 mA (internal power supply)
External dimensions W $\times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$40 \times 90 \times 83$
MASS (Weight): kg	Approx. 0.2

*1 : Class 3 communication supports the server functions.
*2 : The total number of connections for Class 3 communications and UCMM communications is 32 .
*3 : This size is the maximum size which can be specified to 'Data length' of Class 1 communication input data area of the request command during the client operation.
During the sever operation, since the FX5-ENET/IP automatically responds according to the request command received from the client, the maximum size is not prescribed.
*4 : For maximum segment length (length between hubs), consult the manufacturer of the hub used.
*5 : This number applies when a repeater hub is used. When using a switching hub, check the number of cascaded stages with the manufacturer of the hub to be used
*6 : IEEE802.3x flow control is not supported.
*7 : The ports must comply with the IEEE802.3 100BASE-TX standards.
*8 : A straight/cross cable can be used.
*9 : For a compatible version of each protocol, refer to the following manual.
\rightarrow MELSEC iQ-F FX5-ENET/IP User's Manual
*10: The first device for MELSOFT connection is not included in the number of connections. (The second and the following devices are included.)
The CC-Link IE field network Basic is not included in the number of connections.

* 11: The ports must comply with the IEEE802.3 100BASE-TX or IEEE802.3 10BASE-T standards.
*12: Since the IP address is shared by two ports, only one address can be set.
*13: To use the MELSOFT connection, SLMP communication, simple CPU communication, and BACnet/IP, GX Works3 of Ver. 1.075D or later is required.

EtherNet/IP

memo

MODBUS

FX5 can be connected to various MODBUS communication devices as master station or slave station of the MODBUS communication.

MODBUS RTU communication

Features

1) Connection to 32 slave stations for RS-485 communication and one slave station for RS-232C communication is possible with a single master station.
2) Master function and slave functions are supported, and the master and slave can be used simultaneously by a single FX5. (However, only 1 channel can be used for the master station.)
3) Up to 4 channels*1 can be used for MODBUS serial communication function by one CPU module.

System configuration example

MODBUS/TCP communication

Specifications

Item		Specifications	
		FX5U/FX5UC CPU module Built-in RS-485 port FX5-485-BD FX5-485ADP	$\left\lvert\, \begin{aligned} & \text { FX5-232-BD } \\ & \text { FX5-232ADP } \end{aligned}\right.$
Number of connected modules		Up to 4 channels*1 (only 1 channel for the master)	
	Communication interface	RS-485	RS-232C
	Baud rate	300/600/1200/2400/4800/9600/19200/ 38400/57600/115200 bps	
	Data length	8 bits	
	Parity bit	None, odd or even	
	Stop bit	1 bit/2 bits	
	Transmission distance*2	1200 m or less when configured with FX5-485ADP only 50 m or less when configured other than the above	15 m or less
	Communication protocol	RTU	
	Number of connectable slaves*3	32 stations	1 station
	Number of functions	8 (without diagnostic function)	
	Number of simultaneous transmission messages	1 message	
	Maximum number of writes	123 words or 1968 coils	
	Maximum number of reads	125 words or 2000 coils	
	Number of functions	8 (without diagnostic function)	
	Number of messages that can be received simultaneously	1 message	
	Station number	1 to 247	

* 1: Available by either master or slave.

Maximum number of channels differs depending on the CPU module. For details, refer to the following manual.
\rightarrow MELSEC iQ-F FX5 User's Manual (MODBUS Communication)

* 2: The transmission distance varies depending on the type of communications equipment.
* 3: The number of slaves varies depending on the type of communications equipment.

Features

1) Communication is possible, via Ethernet connection, with various MODBUS/TCP master devices connected to the FX5 set as the slave station.
2) Master function and slave functions are supported, and the master and slave can be used simultaneously by a single FX5.
3) Up to 8 connections can be used for MODBUS/TCP communication function by one CPU module.
4) The master uses a predefined protocol support function and controls the slave.

System configuration example

\diamond Specifications

For communication specification other than the followings, refer to the MELSEC iQ-F FX5 User's Manual (Ethernet Communication).

Items	Specifications			
Supported protocol	MODBUS/TCP (Binary only supported)			
Number of connections	Total of 8 connections*1 (Up to 8 external devices can access one CPU module at the same time.)			
Slave function	Number of functions			
	Port station No.	$	$	$502^{* 2}$
:---	:---			

*1: The number of available connections decreases when the other Ethernet communication function is used. However, the first MELSOFT connection, CC-Link IE Field Network Basic, FTP server, FTP client, SNTP client, and Web server are not included in the number of connections (The second and subsequen MELSOFT connections are included). For details on the Ethernet communication function, refer to the following manual.
\rightarrow MELSEC iQ-F FX5 User's Manual (Ethernet Communication)
*2: The port station No. can be changed by the communication setting.

Sensor Solution

Sensor wire-saving system of AnyWireASLINK is easily configurable.

FX5-ASL-M type AnyWireASLINK system master module

Features

1) The AnyWireASLINK system can centrally monitor the status of sensors from the PLC and perform disconnection/short-circuit detection, sensor sensitivity setting, status monitoring, etc. It has no restriction on minimum distance between terminals. Any wiring method, such as T-branch, multi-drop, and star, can be used, and it can be flexibly branched and connected.
2) Since the status of the sensor can be monitored from the PLC, it is possible to predict the occurrence of troubles such as a decrease in the amount of light received by the sensor and prevent the production line from stopping in advance.
3) ID (address) can be changed from the buffer memory for one remote module without using the address writer. A remote ID can be changed even from a remote location.*
*: For the remote modules compatible with the remote address change function, contact Anywire Corporation.

Safety precautions

FX5-ASL-M is jointly developed and manufactured with Anywire Corporation. Note that the warranty for this product differs from the ones for other PLC products.
For details of warranty and specifications, refer to the manual.

Specifications

Item	Specifications
Transmission clock	27.0 kHz
Maximum transmission distance (total extension distance)	200 m*1
Transmission system	DC power supply superimposed total frame/cyclic system
Connection type	Bus type (multi-drop method, T-branch method, tree branch method)
Transmission protocol	Dedicated protocol (AnyWireASLINK)
Error control	Checksum, double check method
Number of connected I/O points	- FX5UJ: Up to 216 points*2 (192 input points maximum/192 output points maximum) - FX5U, FX5UC: Up to 448 points*2*3 (256 input points maximum/256 output points maximum)
Number of connected modules	Up to 128 modules (the number varies depending on the current consumption of each remote module)
Maximum number of I/O points per system	Number of remote module input points + number of remote module output points ≤ 384 points
External interface	7-piece spring clamp terminal block push-in type
RAS function	- Transmission line disconnection position detection function - Transmission line short-circuit detection function - Transmission power drop detection function
Transmission line (DP, DN)	UL compatible general-purpose 2-wire cable (VCTF, VCT $1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, temperature rating $70^{\circ} \mathrm{C}$ or higher) UL compatible general-purpose cable ($1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, temperature rating $70^{\circ} \mathrm{C}$ or higher) Dedicated flat cable ($1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, temperature rating $90^{\circ} \mathrm{C}$)
Power cable (24V, 0 V)	UL compatible general-purpose 2-wire cable (VCTF, VCT 0.75 to $2.0 \mathrm{~mm}^{2}$, temperature rating $70^{\circ} \mathrm{C}$ or higher) UL compatible general-purpose power cable (0.75 to $2.0 \mathrm{~mm}^{2}$, temperature rating $70^{\circ} \mathrm{C}$ or higher) Dedicated flat cable ($1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, temperature rating $90^{\circ} \mathrm{C}$)
Memory	Built-in EEPROM (Number of times of overwrite : 100000 times)
Compatible CPU module	FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Applicable engineering tool	FX5UJ: GX Works3 Ver. 1.060N or later FX5U, FX5UC,: GX Works3 Ver. 1.035M or later
Power supply	5 V DC, 200 mA (internal power supply) 24 V DC - $10 \%,+15 \% 100 \mathrm{~mA}$ (external power supply)
Number of occupied I/O points	8 points (Either input or output is available for counting.)
Number of connectable modules	FX5UJ, FX5U, FX5UC: Max. 1 module*4
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$40 \times 90 \times 97.3$
MASS (Weight): kg	Approx. 0.2

* 1: For the remote module in which the transmission line (DP, DN) and module body are integrated, the length of the transmission line (DP, DN) is also included in the total extension.
When laying a 4-wire (DP, DN, $24 \mathrm{~V}, 0 \mathrm{~V}$) line for fifty meters or more, insert a power line noise filter between the power supply and the line.
For details, refer to the manual of ASLINK filter (ANF-01) made by Anywire Corporation.
* 2: The number of remote I/O points that can be used CPU module varies depending on the number of input/ output points of the extension device.
For the limit of the number of I/O points, refer to the following manual.
\rightarrow MELSEC iQ-F FX5S/FX5UJ/FX5U/FX5UC User's Manual (Hardware)
* 3: Supported by FX5U/FX5UC CPU module Ver. 1.100 or later and by GX Works3 Ver. 1.047Z or later.
* 4: Use together with the FX3U-128ASL-M is not possible.

FX3U-128ASL-M type AnyWireASLINK system master block

Characteristics

1) A master module enables MELSEC iQ-F series to be connected to the AnyWireASLINK sensor wire-saving system of Anywire Corporation.
2) FX3U-128ASL-M type AnyWireASLINK system master module has a proprietary AnyWire transmission system including a power supply (equivalent to $24 \mathrm{~V} D C$, MAX. 2 A) as a transmission signal, and thus realizes save wiring up to 200 m with a 4-core or 2-core cable.
3) When using ASLINKAMP or ASLINKSENSOR, settings can be changed by a ladder program, engineering tool or GOT. Set-up changes can be done remotely.

Safety Precautions

FX3U-128ASL-M is jointly developed/ manufactured with Anywire Corporation. Guarantee details are different from other PLC products. Refer to manuals for guarantees/ specifications.

Specifications

liems	Specifications
Transmission clock	27.0 kHz
Max. transmission distance (total extension length)	200 m
Transmission method	DC power supply superimposing total frame/cyclic method
Connection configuration	Bus type (Multi-drop method, T-branch method, tree branch method)
Transmission protocol	Dedicated protocol (AnyWireASLINK)
Error control	Double verification method, checksum
No. of connection I/O points	Max. 128 points
No. of connection modules	Max. 128 modules (variable depending on current consumption)
Max. no of I/O points per system	No. of input points of remote module + No. of output points of remote module \leq 128 points
RAS function	- Transmission line disconnection position detection function - Transmission line short-circuit detection function - Transmission power drop detection function
AnyWireASLINK transmission line	UL supported general-use 2-line cable NCTF, VCT $1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, rated temperature: $70^{\circ} \mathrm{C}$ or higher) UL supported general-use electric wire ($1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, rated temperature: $70^{\circ} \mathrm{C}$ or higher), dedicated flat cable ($1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, rated temperature: $90^{\circ} \mathrm{C}$)
24 VDC power supply line	UL supported general-use 2-line cable (VCTF, VCT 0.75 to $2.0 \mathrm{~mm}^{2}$, rated temperature: $70^{\circ} \mathrm{C}$ or higher) UL supported general-use electric wire (0.75 to $2.0 \mathrm{~mm}^{2}$, rated temperature: $70^{\circ} \mathrm{C}$ or higher), dedicated flat cable ($1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, rated temperature: $90^{\circ} \mathrm{C}$)
Compatible CPU module	FX5U, FX5UC: Compatible from initial product Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).
Power supply	5 V DC, 130 mA (internal power supply) 24 V DC - 10\% + $15 \% 100 \mathrm{~mA}$ (AnyWireASLINK communication external power supply)
No. of occupied I/O points	8 points (Either input or output is available for counting.)
Communication with PLC	Done by FROM/TO instruction via buffer memory (buffer memory can be directly specified)
No.of connectable modules	FX5U, FX5UC: Max. 1 module*
External dimensions W $\times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$43 \times 90 \times 95.5$
MASS (Weight): kg	Approx. 0.2

*: Use together with the FX5-ASL-M is not possible.

Your requests for reduced wiring, detecting of disconnection/short circuit, setting of sensor sensitivity, and status monitoring can be satisfied by MELSEC iQ-F.

Example of system configuration (AnyWireASLINK)

FX5-ASL-M

AnyWireASLINK sensor can be connected.
Detection of short circuit and disconnection, setting of sensor sensitivity, address automatic recognition

Total extension length of 200 m $^{* 1}$, Max. 448 points*2*3*4

*1: Total extension distance including the portion of branch line.
*2: The number of remote I/O points that can be used with the CPU module varies depending on the number of input/output points of the extension device. For the limit of the number of I/O points, refer to the following manual.
\rightarrow MELSEC iQ-F FX5S/FX5UJ/FX5U/FX5UC User's Manual (Hardware)

* 3: Supported by FX5U/FX5UC CPU module Ver. 1.100 or later and by GX Works3 Ver. $1.047 Z$ or later.
* 4: FX5UJ CPU module: Up to 216 points.
*5: Subject to change based upon current consumption of each remote module.

PROFIBUS-DP

PROFIBUS is an industrial fieldbus developed and maintained by PROFIBUS \& PROFINET International (PI). This protocol enables high-speed data transmission between field devices such as a remote I/O module or drive and a controller.

FX5-DP-M type PROFIBUS-DP master module

Features

1) This master module is necessary for using the MELSEC iQ-F Series as a PROFIBUS-DP master station.
Using this product makes it possible to incorporate compatible slave devices into the system.
2) Using the buffer memory makes it possible to obtain communications error information or extended communications error information generated by a slave station during I/O data transmission.
3) Settings can be configured with the following software:

- GX Works3
(FX5UJ: Ver. 1.060 N or later,
FX5U/FX5UC: Ver. 1.050C or later)
- PROFIBUS Configuration Tool (FX5UJ: Ver. 1.03D or later, FX5U/FX5UC: Ver. 1.02C or later)

Specifications

Items		Specifications
PROFIBUS-DP station type		Class 1 master station
Electrical standard and characteristics		Compliant with EIA-RS485
Medium		Shielded twisted pair cable
Network configuration		Bus topology (or tree topology when repeaters are used)
Data link method		Between DP-Masters: Token passing
		Between DP-Master and DP-Slave: Polling
Encoding method		NRZ
Transmission speed*		9.6 kbps, $19.2 \mathrm{kbps}, 93.75 \mathrm{kbps}, 187.5 \mathrm{kbps}, 500 \mathrm{kbps}, 1.5 \mathrm{Mbps}, 3 \mathrm{Mbps}, 6 \mathrm{Mbps}$, 12 Mbps
Transmission distance		Differs depending on transmission speed
Maximum number of repeaters (Between DP-Master and DP-Slave)		3 repeaters
Number of connectable modules (per segment)		32 per segment (including repeaters)
Maximum number of DP-Slaves		64 modules
Number of connectable nodes (number of repeaters)		32, 62 (1), 92 (2), 122 (3), 126 (4)
Transmittable data	Input data	Max. of 2048 bytes (Max. of 244 bytes per DP-Slave)
	Output data	Max. of 2048 bytes (Max. of 244 bytes per DP-Slave)
Compatible CPU module		FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.110 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Applicable engineering tool		FX5UJ: GX Works3 Ver. 1.060N or later PROFIBUS Configuration Tool: Ver. 1.03D or later FX5U, FX5UC: GX Works3 Ver. 1.050C or later PROFIBUS Configuration Tool: Ver. 1.02C or later
Number of occupied I/O points		8 points (Either input or output is available for counting.)
Number of connectable modules		FX5UJ, FX5U, FX5UC: Up to 1 module
Power supply		24 V DC, 150 mA (internal power supply)
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$40 \times 90 \times 85.3$
MASS (Weight): kg		Approx. 0.2

* : Transmission speed accuracy is within $\pm 0.2 \%$ (compliant with IEC61158-2).

FX3U-32DP PROFIBUS-DP interface block

Features

Connectable as a MELSEC iQ-F Series slave station in PROFIBUS-DP systems.

\checkmark Specifications

Items	Specifications					
PROFIBUS-DP station type	PROFIBUS-DP slave station					
Transmission speed	$9.6 \mathrm{kbps}, 19.2 \mathrm{kbps}, 45.45 \mathrm{kbps}, 93.75 \mathrm{kbps}, 187.5 \mathrm{kbps}, 500 \mathrm{kbps}, 1.5 \mathrm{Mbps}, 3 \mathrm{Mbps}$, 6 Mbps, 12 Mbps					
Transmission distance/segment	Transmission speed	9.6 kbps, 19.2 kbps, 45.45 kbps , 93.75 kbps	187.5 kbps	500 kbps	1.5 Mbps	3 Mbps, 6 Mbps, 12 Mbps
	No repeaters	1,200 m	1,000 m	400 m	200 m	100 m
	1 repeater	2,400 m	2,000 m	800 m	400 m	200 m
	2 repeaters	3,600 m	3,000 m	1,200 m	600 m	300 m
	3 repeaters	4,800 m	4,000 m	1,600 m	800 m	400 m
Transmittable data	Up to 144 bytes					
	Default: 32 bytes (cyclic input / cyclic output)					
PROFIBUS module ID	F332h					
Global control	Supports SYNC, UNSYNC, FREEZE, and UNFREEZE modes					
Compatible CPU module	FX5U, FX5UC: Compatible from initial product Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).					
Number of occupied I/O points	8 points (Either input or output is available for counting.)					
Number of connectable modules	FX5U: Up to 8 modules*, FX5UC: Up to 6 modules					
Power supply	24 V DC, 145 mA (internal power supply)					
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$43 \times 90 \times 89$					
MASS (Weight): kg	Approx. 0.2					

General-purpose Communication Devices

Various communication functions can be added easily using an expansion board or expansion adapter.
Communications with data link or external serial interface device can be realized easily by adding an expansion board.

Expansion board (for communication)

Features

1) Communication expansion board can be added to FX5S/FX5UJ/FX5U CPU module. 2) Communication function can be added inexpensively.
Refer to the following items for usage method of expansion board.

- "N:N network" • "Parallel link" • "MC protocol"
- "Non-protocol communication"
- "Connection to peripheral device"
- "Inverter communication function"

Specifications

Mode//Characteristics	Items	Specifications
FX5-232-BD RS-232C communication expansion board	Transmission standard	Conforming to RS-232C standard
	Max. transmission distance	15 m
	External device connection method	9-pin D-sub (male)
	Insulation	Non-isolation (between communication line and CPU)
	Communication method	Half-duplex bidirectional/Full-duplex bidirectiona\|*1
	Protocol type	MELSOFT connection, MC protocol (1C/3C/4C frame), non-protocol communication, MODBUS RTU communication, predefined protocol support
	Communication speed	300/600/1200/2400/4800/9600/19200/38400/57600/115200 (bps)*1
	Terminal resistors	-
	Power supply	5 V DC, 20 mA (internal power supply)*2
	Compatible CPU module	FX5S, FX5UJ, FX5U CPU module
	No. of occupied l/O points	0 points (no occupied points)
	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$38 \times 51.4 \times 18.2$
	MASS (Weight): kg	Approx. 0.02
Mode/Characteristics	Items	Specifications
FX5-485-BD RS-485 communication expansion board	Transmission standard	Conforming to RS-485 and RS-422 standards
	Max. transmission distance	50 m
	External device connection method	European-type terminal block
	Insulation	Non-isolation (between communication line and CPU)
	Communication method	Half-duplex bidirectiona//Full-duplex bidirectiona**1
	Protocol type	MELSOFT connection, MC protocol (1C/3C/4C frame), non-protocol communication, MODBUS RTU communication, inverter communication, $\mathrm{N}: \mathrm{N}$ network, parallel link, predefined protocol support
	Communication speed	300/600/1200/2400/4800/9600/19200/38400/57600/115200 (bps)*1
	Terminal resistors	Built in (OPEN/110 $\Omega / 330 \Omega$)
	Power supply	5 V DC, 20 mA (internal power supply)*2
	Compatible CPU module	FX5S, FX5UJ, FX5U CPU module
	No. of occupied I/O points	0 points (no occupied points)
	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$38 \times 51.4 \times 30.5$
	MASS (Weight): kg	Approx. 0.02
Mode/Characteristics	Items	Specifications
FX5-422-BD-GOT RS-422 communication expansion board (GOT connection)	Transmission standard	Conforming to RS-422 standard
	Max. transmission distance	As per GOT specifications
	External device connection method	8-pin MINI-DIN (female)
	Insulation	Non-isolation (between communication line and CPU)
	Communication method	Half-duplex bidirectional
	Communication speed	9600/19200/38400/57600/115200 (bps)
	Terminal resistors	-
	Power supply	5 V DC, 20 mA (internal power supply****3
	Compatible CPU module	FX5S, FX5UJ, FX5U CPU module
	No. of occupied I/O points	0 points (no occupied points)
	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$38 \times 51.4 \times 15.4$
	MASS (Weight): kg	Approx. 0.02

[^63]*2: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.
*3: When the GOT 5V type is connected with this product, the power consumption increases. For the current consumption, refer to the manual of the model to be connected.

General-purpose Communication Devices

FX5-232ADP communication adapter is an expansion adapter for RS-232C communication

Features

Insulation type RS-232C communication adapter Refer to the "MC protocol", "Non-protocol communication", "Connection to peripheral device" for more details of functions.

Specifications

Items	Specifications
Transmission standard	Conforming to RS-232C standard
Max. transmission distance	15 m
Insulation	Photocoupler (between communication line and CPU)
External device connection method: connector	9-pin D-sub (male)
Communication method	Half-duplex bidirectional/Full-duplex bidirectional
Protocol type	MELSOFT connection, MC protocol (1C/3C/4C frame), non-protocol communication, MODBUS RTU communication, predefined protocol support
Communication speed	$300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 / 38400 / 57600 / 115200$ (bps)*1
No. of occupied I/O points	0 points (no occupied points)
Current consumption (internal supply)	5 V DC $30 \mathrm{~mA} / 24 \mathrm{~V}$ DC 30 mA
Compatible CPU module	FX5S, FX5UJ, FX5U, FX5UC: Compatible from initial product
Number of connectable modules	FX5S, FX5UJ, FX5U, FX5UC: Up to 2 communication adapters are provided
External dimensions W \times H \times D (mm) left side of the CPU module.*2	
MASS (Weight): kg	$17.6 \times 106 \times 82.8$

*1: The communication method and communication speed vary depending upon the communication type.
*2: For FX5S, FX5UJ CPU module, when the expansion board is connected, up to one communication adapter can be connected.

FX5-485ADP communication adapter is an expansion adapter for RS-485 communication

Features

Insulation type RS-485
communication adapter
Refer to the "N:N network", "Parallel link", "MC Protocol", "Non-protocol communication", "Connection to peripheral device", "Inverter communication function" for more details of functions.

Specifications

Items	Specifications
Transmission standard	Conforming to RS-485 and RS-422 standards
Max. transmission distance	1200 m
Insulation	Photocoupler (between communication line and CPU)
External device connection method	European-type terminal block
Communication method	Half-duplex bidirectional/Full-duplex bidirectional
Protocol type	MELSOFT connection, MC protocol (1C/3C/4C frame), non-protocol communication, MODBUS RTU communication, inverter communication, N:N network, parallel link, predefined protocol support
Communication speed	$300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 / 38400 / 57600 / 115200$ (bps)*1
Terminal resistors	Built in (OPEN/110 $\Omega / 330 \Omega$)
No. of occupied I/O points	0 points (no occupied points)
Current consumption (internal supply)	5 V DC $20 \mathrm{~mA} / 24 \mathrm{~V}$ DC 30 mA
Compatible CPU module	FX5S, FX5UJ, FX5U, FX5UC: Compatible from initial product
Number of connectable modules	FX5S, FX5UJ, FX5U, FX5UC: Up to 2 communication adapters are provided
External dimensions the left side of the CPU module.*2	
W \times H \times (mm)	$17.6 \times 106 \times 89.1$
MASS (Weight): kg	Approx. 0.08

* 1: The communication method and communication speed vary depending upon the communication type.
*2: For FX5S, FX5UJ CPU module, when the expansion board is connected, up to one communication adapter can be connected.

N:N Network

Data links can be easily configured among PLCs by using an RS-485 communication device.

RS-485 communication device

Model		Types	Compatible CPU module			
			FX5UJ	FX5U	FX5UC	
FX5-485-BD	Expansion board		0	0	\times	
FX5-485ADP	Expansion adapter		0	0	0	
-	Built-in RS-485 port	\times	\times	0	0	

$\mathrm{N}: \mathrm{N}$ network function

Features

1) Data link can be realized by a simple program for connecting up to 8 modules of FX5 or FX3.
2) The bit device (0 to 64 points) and word device (4 to 8 points) are automatically linked between each station. The ON/OFF state of other stations and data register values can

System configuration example

\diamond Specifications of $\mathrm{N}: \mathrm{N}$ network function

Items		Specifications
Transmission standard		Conforming to RS-485 standard
Total extension length		Configuration only using FX5-485ADP: 1200 m or less Configuration using FX5-485ADP, FX3U-485ADP(-MB): 500 m or less Configuration other than above: 50 m or less (at coexisting of built-in RS-485 port, FX5-485-BD and 485-BD for FX3: 50 m or less)
Communication method/Transmission speed		Half-duplex bidirectional, 38400 bps
No.of connectable modules		Max. 8 modules
No. of link points	Pattern 0	Bit device: 0 points Word device: 4 points
	Pattern 1	Bit device: 32 points Word device: 4 points
	Pattern 2	Bit device: 64 points Word device: 8 points
Link refresh time (ms)	Pattern 0	Based on the no. of connection modules, 2 modules (20), 3 modules (29), 4 modules (37), 5 modules (46), 6 modules (54), 7 modules (63), 8 modules (72)
	Pattern 1	Based on the no. of connection modules, 2 modules (24), 3 modules (35), 4 modules (45), 5 modules (56), 6 modules (67), 7 modules (78), 8 modules (88)
	Pattern 2	Based on the no. of connection modules, 2 modules (37), 3 modules (52), 4 modules (70), 5 modules (87), 6 modules (105), 7 modules (122), 8 modules (139)
Connection device with PLC	FX5S	FX5-485ADP, FX5-485-BD
	FX5UJ	FX5-485ADP, FX5-485-BD
	FX5U	FX5-485ADP, FX5-485-BD
	FX5UC	FX5-485ADP
	FX3S	FX3G-485-BD(-RJ) or FX3S-CNV-ADP+FX3U-485ADP(-MB)
	FX3G	FX3G-485-BD(-RJ) or FX3G-CNV-ADP+FX3U-485ADP(-MB)
	FX3GC	FX3U-485ADP(-MB)
	FX3U, FX3UC*	FX3U-485-BD or Function expansion board+FX3U-485ADP(-MB)
Compatible CPU module		FX5S, FX5UJ, FX5U, FX5UC, FX3S, FX3G, FX3GC, FX3U, FX3UC

[^64]
Parallel Link

Devices can be mutually linked by connecting two FX5 CPU modules via an RS-485 communication device.

RS-485 communication equipment

Model name		Classification	Compatible CPU module			
			FX5UJ	FX5U	FX5UC	
FX5-485-BD	Expansion board		\bigcirc	O	\times	
FX5-485ADP	Expansion adapter		\bigcirc	\bigcirc	\bigcirc	
-	Built-in RS-485 port	\times	\times	\bigcirc	\bigcirc	

Parallel link function

Features

1) With 2 modules of FX5 CPU module connected, devices can be linked to each other only by parameter setting.
2) 2 types of link modes, normal parallel link mode and high-speed parallel link mode, can be selected according to the number of points you want to link to and the link time, and the data link is automatically updated between the 2 modules of FX5 CPU module.

System configuration example

Parallel link

Parallel link specifications

Item	Specifications
Number of connected modules	Up to 2 modules (1:1)
Transmission standards	RS-485 standard compliant
Maximum overall cable distance	1200 m or less when configured with FX5-485ADP only 50 m or less when configured other than the above
Link time	Normal parallel link mode: $15 \mathrm{~ms}+$ master station operation cycle (ms + slave station operation cycle (ms) High-speed parallel link mode: $5 \mathrm{~ms}+$ master station operation cycle $(\mathrm{ms})+$ slave station operation cycle (ms)

MC Protocol

Data link of multiple PLCs can be realized by setting a CPU module or external device as a master station using MC protocol (serial communication).
Since data link is done by command from the external device, it is suitable for configuration of data management and control system by the external device as the main controller.

RS-232C, RS-485 communication device

Model	Types	Compatible CPU module			
		FX5S	FX5UJ	FX5U	FX5UC
FX5-232-BD	Expansion board	\bigcirc	\bigcirc	\bigcirc	\times
FX5-232ADP	Expansion adapter	\bigcirc	\bigcirc	\bigcirc	\bigcirc
FX5-485-BD	Expansion board	\bigcirc	\bigcirc	\bigcirc	\times
FX5-485ADP	Expansion adapter	\bigcirc	\bigcirc	\bigcirc	\bigcirc
-	Built-in RS-485 port	\times	\times	\bigcirc	\bigcirc

MC protocol function

Features

1) Using the RS-485 communication device enables connection of up to 16 modules of FX5 CPU module, and data can be transferred according to commands from the PC.
2) Using the RS-232C communication device enables 1:1 data transfer with the PC.
3) Communication by MC protocol A-compatible 1C frame and QnA-compatible-3C/4C frame is possible. (Type 1/Type 4/ Type 5)

System configuration example

1) $1: n$ connection using RS-485 communication

2) $1: 1$ connection using RS-232C communication

MC protocol function specifications

Items		Specifications
Transmission standard		Conforming to RS-485/RS-232C standard
Total extension length	RS-485	When using FX5-485ADP: 1200 m or less When using the built-in RS-485 port or FX5-485-BD: 50 m or less
	RS-232C	15 m or less
Communication method		Half-duplex bidirectional
Transmission speed		300/600/1200/2400/4800/9600/19200/38400/57600/ 115200 bps
No.of connectable modules		Max. 16 modules
Protocol types		MC protocol (dedicated protocol) 1C/3C Frame (Type1/Type4) / 4C Frame (Type1/Type4/Type5)
RS-485 connection device	FX5S	FX5-485-BD or FX5-485ADP
	FX5UJ	FX5-485-BD or FX5-485ADP
	FX5U	Built-in RS-485 port, FX5-485-BD or FX5-485ADP
	FX5UC	Built-in RS-485 port or FX5-485ADP
RS-232C connection device	FX5S	FX5-232-BD or FX5-232ADP
	FX5UJ	FX5-232-BD or FX5-232ADP
	FX5U	FX5-232-BD or FX5-232ADP
	FX5UC	FX5-232ADP
Compatible CPU module		FX5S, FX5UJ, FX5U, FX5UC

RS-232C/RS-485 Non-protocol Communication

MELSEC iQ-F Series modules can communicate with printers, code readers, measurement instruments, etc. having an interface in accordance with RS-232C/RS-485 (RS-422).
Communication is performed using sequence programs (RS2 instruction).

RS-232C communication
RS-232C communication device

Communication specification

Refer to the specifications of each communication device for the details of RS-232C device specifications.

System configuration

RS-485 (RS-422) communication
RS-485 (RS-422) communication device

Model (No. of channels)	Communication method	Insulation	Maximum transmission distance	Control instruction	Compatible CPU module			
					FX5S	FX5UJ	FX5U	FX5UC
FX5-485-BD (1 ch)	Half-duplex bidirectional/ Full-duplex bidirectional	Non-isolation (between communication line and CPU)	50 m	RS2 instruction	(Max. 1 module)	(Max. 1 module)	(Max. 1 module)	\times
FX5-485ADP (1 ch)	Half-duplex bidirectional/ Full-duplex bidirectional	Photocoupler (between communication line and CPU)	1200 m	RS2 instruction	(Max. 2 modules)	(Max. 2 modules)	(Max. 2 modules)	
Built-in RS-485 port (1 ch)	Half-duplex bidirectional/ Full-duplex bidirectional	Non-isolation (between communication line and CPU)	50 m	RS2 instruction	\times	\times	\bigcirc	\bigcirc

Communication specification

Refer to the specifications of each communication device for the details of RS-485 device specifications.

System configuration example

Connection to Peripheral Devices

Installing RS-422/RS-232C communication devices enables addition of connection ports with peripheral devices. PLC programming devices such as PC and $\mathrm{HMI}(G O T)$ can be connected to the added ports.

RS-232C communication
RS-232C communication device

Communication specification

Refer to the specifications of each communication device for the detailed specifications of RS-232C peripheral devices (programming protocol).

Connection cable for RS-232C communication device and peripheral devices The main connection cables are as follows:

Connection destination	Cable
DOSN PC (9-pin D-SUB)	FX-232CAB-1
HMI (GOT)	Use the specific cable or wire for RS-232C connection of each HMI.

Concurrent use of peripheral device

Connect an engineering tool such as PC software to either one of peripheral devices to avoid programs from being changed by multiple peripheral devices.

RS-422 (GOT) communication

$>$ RS-422 communication device

Model (No. of channels)	Communication method	Insulation	Maximum transmission distance	Compatible CPU module			
				FX5S	FX5UJ	FX5U	FX5UC
FX5-422-BD-GOT (1 ch)	Half-duplex bidirectional	Non-isolation (between communication line and CPU)	As per GOT specifications	\bigcirc (Max. 1 module)	○ (Max. 1 module)	\bigcirc (Max. 1 module)	\times

Communication specification

Refer to the manual of GOT.

Communication cable

Use a dedicated cable for GOT.

Inverter Communication Function

Dedicated instructions for Mitsubishi Electric inverter protocol and communication control are built in FX5. Connecting an inverter enables simple control of inverter.

RS-485 communication

RS-485 communication device

*: Half-duplex bidirection in case of connecting to inverter.

System configuration example

FX5S/FX5UJ/FX5U/FX5UC CPU module FX5U/FX5UC Built-in RS-485 port

- Connectable Mitsubishi Electric general-purpose inverter

Inverter
[Connectable Models]
A800/A800 Plus/F800/E800/F700PJ/E700/E700EX (sensorless servo)/D700

OPC UA

By installing the OPC UA module (OPC UA server), OPC UA communication with the OPC UA client (an external application or device) can be performed. OPC UA communication is suitable for use in all networks including the Internet due to robust security.

FX5-OPC type OPC UA module

Features

1) The FX5U/FX5UC CPU module can be connected to the OPC UA network.
2) The OPC UA server can be mounted in the equipment, and a robust system can be configured as an alternative to a PC-based OPC UA server.
3) The OPC UA security functions, such as certificate, encryption, and signing, can be used.
4) The dedicated setting tool (OPC UA Module Configuration Tool) enables you to set the IP address and security parameters, control the server certificate, and check/change the server status. After the initial setting, GX Works3 is not required. The functions can be operated only via the OPC UA Module Configuration Tool.
\diamond Specifications

Items				Specifications
OPC UA server	OPC UA version			1.03
	Profile			Micro Embedded Device Server Profile For details, refer to the manual.
	Service			For details, refer to the manual.
	Address space			For details, refer to the manual.
	User authentication			User name and password
	Maximum number of parallel sessions			4
	Maximum number of subscriptions per session			2
	Maximum number of monitored items per subscription			500
	Minimum sampling interval of a monitored item			100 ms
	Maximum number of trusted certificates			10
	Time information			For details, refer to the manual.
	Network topology			Star topology
Ethernet	Transmission specifications	Data transmission speed		100/10 Mbps
		Communication mode		Full-duplex or half-duplex*1
		Transmission method		Base band
		Interface		RJ45 connector
		Maximum segment length		100 m *2
		Number of cascade connections	100BASE-TX	2 levels maximum*3
			10BASE-T	4 levels maximum*3
	Hub*1			Hubs with 100BASE-TX or 10BASE-T ports*4 can be used.
	Connection cable*5			100BASE-TX, 10BASE-T
	Number of ports			2
Compatible CPU module				FX5U, FX5UC: Ver. 1.245 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Applicable engineering tool				FX5U, FX5UC: GX Works3 Ver. 1.077F or later OPC UA Module Configuration Tool: Ver. 1.00A or later
Number of occupied I/O points				8 points (Either input or output is available for counting.)
Number of connectable modules				FX5U, FX5UC: Up to 1 module
Power supply				24 V DC, 110 mA (internal power supply)
External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$				$40 \times 90 \times 83$
MASS (Weight): kg				Approx. 0.2

*1: IEEE802.3x flow control is not supported.
*2: For maximum segment length (length between hubs), consult the manufacturer of the hub used.
*3: This number applies when a repeater hub is used. When using a switching hub, check the number of cascaded stages with the manufacturer of the hub to be used.

* 4: The ports must comply with the IEEE802.3 100BASE-TX or IEEE802.3 10BASE-T standards.
*5: A straight/cross cable can be used.

Engineering Tool

Various types of engineering software are prepared to enable easy programming for the Mitsubishi Electric PLC and realize comfortable operation.

MELSOFT iQ Works FA Integrated Engineering Software

- iQ Works (English version) Model: SW2DND-IQWK-E (DVD)

\diamond Features

- By realization of a seamless integrated engineering environment, the total cost will be reduced.
- All the system labels can be checked on MELSOFT Navigator.
- Parameter settings for each project (GX Works3, GX Works2, MT Works2, and GT Works3) can be configured from MELSOFT Navigator.
This eliminates the need to launch various tools when configuring the parameter settings.
- System configuration can be managed graphically. Allows the user to manage the system configuration graphically, and the effort to search for an appropriate tool can be eliminated by linking the project.
- Double click the project from the system configuration figure and work space tree of MELSOFT Navigator to start the software for the device automatically.
- The data on whole system can be backed up in a batch by simple operation.

By realization of a seamless integrated engineering environment, the total cost will be reduced!

Sold as a set integrating various engineering software centered around MELSOFT Navigator, MELSOFT iQ Works eliminates the need to purchase software separately. The ability to share design information including system design and programming throughout the control system makes it possible to improve efficiency of system design and programming while reducing total costs.

MELSOFT GX Works3 PLC Engineering Software

- GX Works3 \qquad Model: SW1DND-GXW3-E (DVD)

Features

- Achieving an easy and intuitive programming by only making "selections" in a graphical environment with module configuration diagram and module label/ module FB.
- Supporting various applications (parameter settings of simple motion module, creation of positioning data, parameter setting and servo adjustments of servo amplifier).
- Complying with the international standard IEC 61131-3 for engineering software and supporting the modularized and structured programming. Programming languages such as ladder, ST, FBD/ LD, SFC* are available.

- Enabling transmitting/receiving of the data between an external device and the CPU module by matching the protocol of the external device. (Communication protocol support function)
*: Supported in the FX5U/FX5UC CPU module firmware version 1.220 or later. In addition, GX Works3 version 1.070Y or later is required.

MELSOFT MX series Integrated Data Link Software

- MX Component (Communication ActiveX ${ }^{\oplus}$ Library) MX Component Ver. 4 Model: SW4DNC-ACT-E MX Component Ver. 5 Model: SW5DND-ACT-E
- MX Sheet (Microsoft ${ }^{\oplus}$ Excel ${ }^{\oplus}$ Communication Support Tool)

MX Sheet Ver. 2 Model: SW2DNC-SHEET-E
MX Sheet Ver. 3 Model: SW3DND-SHEET-E

- MX Works

A set product of MX Component Ver. 4 and MX Sheet Ver. 2 Model: SW2DNC-SHEETSET-E A set product of MX Component Ver. 5 and MX Sheet Ver. 3 Model: SW3DNC-SHEETSET-E

Features

- A group of middleware remarkably improving development efficiency in the system configuration.
- Familiar Microsoft ${ }^{\oplus}$ Excel ${ }^{\oplus}$ settings on the screen enables easy data access of the on-site PLC without any program.
- Enabling the system to be configurable without considering a communication protocol.
- Enabling monitoring of on-site system only by setting parameters on the screen.
- Available in the 64-bit application. (MX Component Ver. 5)
- Available in the 64-bit version of Microsoft ${ }^{\oplus}$ Excel ${ }^{\oplus}$. (MX Sheet Ver. 3)

Operating Environment

Engineering tool operating environment.
For details, refer to catalogs and manuals.

MELSOFT iQ Works and GX Works3 operating environment

Items		Contents		
PC Module	OS English Version	Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 11$ Home ${ }^{* 1 * 2}$ Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 11$ Pro*** Microsoft ${ }^{\oplus}$ Windows ${ }^{\circledR} 11$ Enterprise**2 Microsoft ${ }^{\oplus}$ Windows ${ }^{\circledR} 11$ Education*1*2 Microsoft ${ }^{\oplus}$ Windows ${ }^{\circledR} 10$ Home Microsoft® Windows ${ }^{\circledR} 10$ Pro Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ Enterprise*3	Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ Education Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ loT Enterprise 2016 LTSB Microsoft ${ }^{\oplus}$ Windows ${ }^{\circledR} 8.1$ Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8.1 Pro Microsoft ${ }^{\oplus}$ Windows ${ }^{\oplus}$ 8.1 Enterprise Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Microsoft ${ }^{\oplus}$ Windows ${ }^{\circledR} 8$ Pro	Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Enterprise Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Starter Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Home Basic*2 Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Home Premium Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Professional Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Ultimate Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Enterprise
	CPU	Intel ${ }^{\circledR}$ Core $^{\text {TM } 2 ~ D u o ~} 2 \mathrm{GHz}$ or more recommended		
	Memory Requirements	For 32-bit version: 1 GB or more recommended For 64-bit version: 2 GB or more recommended (For Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 11,4$ GB or more recommended)		
Hard Disc Free Space		[Installation] 26 GB or more*4 free disk space, [Operation] 512 MB or more free virtual memory		
Disc Drive		DVD supported disc drive		
Display		Resolution 1024×768 pixels or more		
Connection to PLC		Optional connection cable and interface are necessary. [PC Communication Port] Connectable from Ethernet port, USB (Mini-B) port, or RS-232C port. FX5S, FX5UJ PLC : Directly connectable by Ethernet and USB, or connectable via an RS-232C communication expansion adapter or an RS-232C communication expansion board. FX5U PLC : Directly connectable by Ethernet, or connectable by RS-232C communication expansion adapter or RS-232C communication expansion board. FX5UC PLC : Directly connectable by Ethernet or connectable by RS-232C communication expansion adapter. Refer to the "PC and PLC Connection Method and Required Equipment" for the details of connection method and required cable types.		
Compatible CPU module		FX5S, FX5UJ, FX5U, FX5UC (Refer to the specific catalog or manual for details on FX Series, L Series, Q Series, and iQ-R Series modules.)		

*1: Only 64-bit version is supported
*2: Only GX Works3 is supported
*3: For Microsoft ${ }^{\oplus}$ Windows ${ }^{\circledR} 10$ IoT Enterprise 2016 LTSB, only 64-bit version is supported
*4: 17 GB or more for installing only GX Works3

PC and PLC Connection Method and Required Equipment

In case of connection between Ethernet port on the PC side

Connecting to the Ethernet port

In case of connection between USB port on the PC side

Connecting to the USB (Mini-B) port

In case of connection between RS-232C port on the PC side

(1) Connection with the RS-232C port attached to PLC (using FX5-232ADP)
(2) Connection with the RS-232C port attached to PLC (using FX5-232-BD)

Compatible Versions of Software

The followings are compatible versions of each software.
New versions may be required due to addition of functions and products. Please refer to the manuals for more details.

Category	Type	Compatible version				
		FX5S	FX5UJ	FX5U	FX5UC	Precautions
Software for PLC	iQ Works	Ver. 2.86Q or later	Ver. 2.62Q or later	Ver. 2.07H or later	Ver. 2.07H or later	Use the latest version when new functions are added.
	GX Works3	Ver. 1.080J or later	Ver. 1.060 N or later	Ver. 1.007H or later	Ver. 1.007 H or later	
Software for GOT (GOT1000 series, GOT2000 series)	GT Works3	Ver. 1.275M or later	Ver. 1.225K or later	Ver. 1.126G or later	Ver. 1.126G or later	Compatible to the device scope. Refer to the GOT manual for other compatible items.

Option/Related Products

We are pleased to offer you a wide variety of our products including SD memory cards, batteries, connection cables for PLC as well as interfaces for signal exchange.

Expansion board (for SD memory card)

Mode/feature	Item	Specifications
FX5-SDCD Expansion board for SD memory card.	SD memory card	NZ1MEM-2GBSD, NZ1MEM-4GBSD, NZ1MEM-8GBSD, NZ1MEM-16GBSD
	Compatible CPU module	FX5S CPU module
	No. of occupied I/O points	0 points (no occupied points)
	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	$43.6 \times 51.4 \times 15.1$
	MASS (Weight): kg	Approx. 16 g

SD Memory Card

Mode/Appearance	Contents			
NZ1MEM-2GBSD NZ1MEM-4GBSD NZ1MEM-8GBSD NZ1MEM-16GBSD		Type	SD memory card	
		Capacity	2 GB	
		Type	SDHC memory card	
		Capacity	4 GB	
		Type	SDHC memory card	
		Capacity	8 GB	
		Type	SDHC memory card	
		Capacity	16 GB	

Battery

Mode//Appearance	Contents
FX3U-32BL	The battery can be used to retain (latch), the status of the device memory or clock data before a power failure. At the time of delivery from the factory, the battery is not built in the CPU module. Please make arrangements if required. Setting of parameter is required for power failure retention.

Option/Related Products

Extension Device
The extension cable for connecting to the right side of the front-stage device has been attached to the extension module (extension cable type).

Mode/Characteristics	Items		Specifications
FX5-C1PS-5V	Power supply voltage		24 V DC
	Voltage variation range		+20\%, -15\%
	Allowable instantaneous power failure time		Operation can be continued upon occurrence of instantaneous power failure for 5 ms or less.
	Power fuse		125 V 3.15 A time lag fuse
This is an extension power supply which is added when the built-in power supply of the DC power supply type FX5U/FX5UC CPU module is insufficient. Only one of the connector connection and cable connection can be used for the next-stage extension connector of the extension power supply module.	Rush current		Max. 35 A 0.5 ms or less/24 V DC
	Power consumption		Max. 30 W
	Current output (back-stage supply)	24 V DC	625 mA (Maximum output current depends on the ambient temperature.)
Derating diagram		5 V DC	1200 mA (Maximum output current depends on the ambient temperature.)
Output current [mA]	Compatible CPU module		FX5U (DC power supply type), FX5UC
	No. of occupied I/O points		0 points (no occupied points)
625	No. of connectable modules		Max. 2 modules
	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$20.1 \times 90 \times 74$
$\xrightarrow[40]{\text { L }} \xrightarrow{\text { L }}$ (emperatue $\left[{ }^{\circ} \mathrm{C}\right]$	MASS (Weight): kg		Approx. 0.1
- Connector Conversion Module			
FX5-CNV-IF (FX5 (extension cable type) \rightarrow FX5 (extension connector type))	Compatible CPU module		FX5UJ, FX5U
	No.of occupied input/output points		0 points (No occupied I/O)
	No.of connectable modules		Max. 1 module
	Current consumption (internal supply)		0 mA (no power consumed)
	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$14.6 \times 90 \times 74$
Converts the connector for connecting an extension connector type for FX5.	MASS (Weight): kg		Approx. 0.06
FX5-CNV-IFC (FX5 (extension connector type) \rightarrow FX5 (extension cable type)) Converts the connector for connecting an extension cable type for FX5.	Compatible CPU module		FX5UC
	No. of occupied I/O points		0 points (No occupied I/O)
	No. of connectable modules		Max. 1 module
	Current consumption (internal supply)		0 mA (no power consumed)
	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$14.6 \times 90 \times 74$
	MASS (Weight): kg		Approx. 0.06
- Extension Power Supply Module (for FX3 Extension Module)			
FX3U-1PSU-5V For extension of power supply when power supply for FX3 extension module is insufficient.	Power supply voltage		100 to 240 V AC
	Allowable power supply vo	Itage range	85 to 264 V AC
	Rated frequency		50/60 Hz
	Allowable instantaneous p time	ower failure	Conditions vary depending on power sources as follows: - 100 V AC power supply: Operation can be continued upon occurrence of instantaneous power failure for 10 ms or less. - 200 V AC power supply: Operation can be continued upon occurrence of instantaneous power failure for 100 ms or less.
Derating diagram	Rush current		Max. 30 A 5 ms or less/100 V AC Max. 65 A 5 ms or less/200 V AC
	Power consumption		Max. 20 W
	Current output (back-stage supply)	24 V DC	0.3 A (Derate the maximum output current at an ambient temperature of $40^{\circ} \mathrm{C}$ or above.)
		5 V DC	1 A (Derate the maximum output current at an ambient temperature of $40^{\circ} \mathrm{C}$ or above.)
	Compatible CPU module		FX5U (AC power supply type)
	No. of occupied I/O points		0 points (no occupied points)
	No. of connectable modules		Max. 2 modules When an FX5 extension power supply module is used, two modules including the FX5 extension power supply module in total can be connected.
	External dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$		$55 \times 90 \times 87$
	MASS (Weight): kg		Approx. 0.3

Option/Related Products

Extension Module Options (Extended Extension Cables/Connector Conversion Adapters)

FX5 extension modules (extension cable type) are equipped with the extension cable for connection to the right side of the front-stage device.
If intending extension of the connection distance or two-row placement of PLCs, an optional "Extended extension cable" is required. Only a single extended extension cable can be used per system.

\checkmark Extended extension cable

Model	Specifications
FX5-30EC (30 cm) FX5-65EC (65 cm)	\diamond Extended extension cable Extension cable for the FX5 extension module. Only a single cable can be used per system. Depending on the CPU module to be used or the device to be connected with, the following connection conversion adapter ($\mathrm{FX} 5-\mathrm{CNV}-\mathrm{BC}$) is required. [Connector conversion adapter required] When the connection destination is an input/output module (extension cable type), high-speed pulse I/O module, or FX5 intelligent function module
FX5-CNV-BC	- Connector conversion adapter This connects between an extension cable and an extension cable type module when an extended extension cable is used.

\diamond Main connection methods

1) Connections with the Powered I/O module and FX5 extension power supply module (extension cable type)
2) Connections with the input/output module (extension cable type) and FX5 intelligent function module

3) Connections with the input/output module (extension cable type) and FX5 intelligent function module

Terminal Block

This allows conversion of the connector of the FX5UC CPU module or the I/O module (extension connector type) to the screw terminal block, resulting in the reduced number of man-hours for I/O wiring.
Using an internal type of I/O element enables driving of a heavy load by a relay or a transistor.

Terminal block

List of Terminal Blocks (Refer to the next page for the details of connection cables and optional connectors.)

Model	No. of input points	No. of output points	Function
FX-16E-TB	Input 16 points or output 16 points		Directly connected to the I/O terminal of PLC. Using this module instead of the PLC terminals or relaying a wiring of I/O device located remotely from PLC enables reducing of the I/O wiring man-hours.
FX-32E-TB	Input 32 points or output 32 points (Division possible: input 16 points and output 16 points) Input 16 points or output 16 points		
FX-16E-TB/UL			
FX-32E-TB/UL	Input 32 points or output 32 points (Division possible: input 16 points and output 16 points)		
FX-16EYR-TB	-	16	Relay Output Type
FX-16EYS-TB	-	16	Triac Output Type
FX-16EYT-TB	-	16	Transistor Output Type (Sink output)
FX-16EYR-ES-TB/UL	-	16	Relay Output Type
FX-16EYS-ES-TB/UL	-	16	Triac Output Type
FX-16EYT-ESS-TB/UL	-	16	Transistor Output Type (Source output)

Specifications

1. PLC Direct Connection (FX-16E-TB, FX-32E-TB)

Since it is for direct connection of PLC I/O terminal, no electrical components are built in.
Electrical specifications are equivalent to that of the connected CPU module or connector type I/O module. A drawing on the right shows the internal connection of FX-16E-TB. In the case of FX-32E-TB, it
 is connected to CN 2 in the same manner.
2. Output (FX-16EY \square-TB)

Model		Relay output	Triac output	Transistor output (Sink output)
		FX-16EYR-TB	FX-16EYS-TB	FX-16EYT-TB
I/O circuit configuration		CN1 connector side Load side	CN1 connector side Load side	CN1 connector side Load side
Load voltage		250 V AC 30 V DC or less	85 V to 242 V AC	5 V to 30 V DC
Circuit insulation		Mechanical insulation	Photocoupler	Photocoupler
Operation display		An LED is turned on when applying an electrical current to a relay coil	An LED is turned on when applying an electrical current to a photothyristor	An LED is turned on when applying an electrical current to a photocoupler
Max. load	Resistance load	$2 \mathrm{~A} / 1$ point $8 \mathrm{~A} / 4$ points	$0.3 \mathrm{~A} / 1$ point $0.8 \mathrm{~A} / 4$ points	$0.5 \mathrm{~A} / 1$ point $0.8 \mathrm{~A} / 4$ points
	Inductive load	80 VA	$15 \mathrm{VA} / 100 \mathrm{~V} \mathrm{AC}, 36 \mathrm{VA} / 240 \mathrm{~V} \mathrm{AC}$	$12 \mathrm{~W} / 24 \mathrm{~V}$ DC
Open circuit leakage current		-	$1 \mathrm{~mA} / \mathrm{A} 100 \mathrm{~V} \mathrm{AC} ,2 \mathrm{~mA} / 200 \mathrm{~V} \mathrm{AC}$	0.1 mA/30 V DC
Min. load		5 V DC, 2 mA (reference value)	0.4 VA/100 V AC, 1.6 VA/200 V AC	-
Response time	$\mathrm{OFF} \rightarrow \mathrm{ON}$	Approx. 10 ms	2 ms or less	0.2 ms or less
	$\mathrm{ON} \rightarrow$ OFF	Approx. 10 ms	12 ms or less	1.5 ms or less
Input signal current		$5 \mathrm{~mA} / 24 \mathrm{~V}$ DC for each point (current consumption)	$7 \mathrm{~mA} / 24 \mathrm{~V}$ DC for each point (current consumption)	$7 \mathrm{~mA} / 24 \mathrm{~V}$ DC for each point (current consumption)

I/O Cable

Mode//Appearance	Contents
FX-16E-500CAB-S (5 m)	- General-purpose I/O cable A 20-pin connector attached to one end of bulk wire
FX-16E-150CAB (1.5 m) FX-16E-300CAB (3 m) FX-16E-500CAB (5 m)	- l/O cable for Terminal block A 20-pin connector attached to both ends of a flat cable (with tube)
	l/O cable for Terminal block A 20-pin connector attached to both ends of round multi core cable

I/O Connector

Model/Appearance	Contents
Connector for self-manufactured I/O cable 20-pin type (electric wire or crimp tool is not enclosed.)	
FX2C-I/O-CON	- Flat cable connector AWG28 ($0.1 \mathrm{~mm}^{2}$): A set of 10 pcs - Crimp connector: FRC2-A020-3OS 1.27-pitch 20 cores - Crimp tool: Separately arrange the tool manufactured by DDK Ltd. 357J-4674D Main Module 357J-4664N Attachment
(1) FX2C-I/O-CON-S (2) FX2C-I/O-CON-SA	(1) Connector for single wires AWG22 ($0.3 \mathrm{~mm}^{2}$): 5 sets - Housing: HU-200S2-001 - Crimp contact: HU-411S - Crimp tool: A product manufactured by DDK Ltd. is separately required. 357J-5538
	(2) Connector for single wires AWG20 ($0.5 \mathrm{~mm}^{2}$): 5 sets - Housing: HU-200S2-001 - Crimp contact: HU-411SA - Crimp tool: A product manufactured by DDK Ltd. is separately required. 357J-13963

Model/Appearance	Contents
- Connector for self-manufactured I/O cable: 40-pin type (electric wire or crimp tool is not enclosed.)	
(1) A6CON1* (2) A6CON2 (3) A6CON4* For FX5-20PG-P, FX5-20PG-D	(1) Soldered type connector (straight protrusion) Twist wire 0.088 to $0.3 \mathrm{~mm}^{2}$ (AWG28 to 22)
	(2) Crimped type connector (straight protrusion) Twist wire 0.088 to $0.24 \mathrm{~mm}^{2}$ (AWG28 to 24)
	(3) Soldered type connector (both straight/inclined protrusion type) Twist wire 0.088 to $0.3 \mathrm{~mm}^{2}$ (AWG28 to 22)
(1) FX-I/O-CON2-S (2) FX-I/O-CON2-SA (For FX3U-2HC)	(1) Connector for single wires AWG22 ($0.3 \mathrm{~mm}^{2}$): 2 sets - Housing: HU-400S2-001 - Crimp contact: HU-411S - Crimp tool: A product manufactured by DDK Ltd. is separately required. 357J-5538
	(2) Connector for single wires AWG20 ($0.5 \mathrm{~mm}^{2}$): 2 sets - Housing: HU-400S2-001 - Crimp contact: HU-411SA - Crimp tool: A product manufactured by DDK Ltd. is separately required. $357 \mathrm{~J}-13963$

[^65]Power Cable

Mode/Appearance	Contents
FX2NC-100MPCB (1 m)	-CPU module power cable Cable for providing 24 V DC power supply to the FX5UC CPU module. Comes with the FX5UC CPU modules and intelligent function modules*.
FX2NC-100BPCB (1 m)	- Power cable Cable for supplying 24 V DC input power supply to an extension connector type input module or input/output module. Offered as an accessory of FX5UC-■MT/D. It is necessary to purchase this cable separately when using an extension connector type input module or input/output module in the FX5U system.
FX2NC-10BPCB1 (0.1 m)	- Power supply transition cable Cable for crossover wiring of 24 V DC input power supply to two or more extension connector type input modules or input/output modules. Offered as an accessory of FX5-CDEX/D and FX5-C32ET/D.

*: There are some exception models. For details, refer to the manual.

Communication cable

Mode/Appearance	Contents
FX-232CAB-1 (3 m)	-RS-232C connection cable for personal computer Cable for connecting between FX5 PLC and personal computer through RS-232C communication D-sub 9-pin (female) \Leftrightarrow D-sub 9-pin (female) (for DOS $/ \mathrm{N}$, etc.)
MR-J3USBCBL3M (3 m)	- Personal computer communication cable (USB cable) Cable for connecting between FX5S/FX5UJ CPU module and personal computer through USB communication CPU module (built-in connector for USB communication) \Leftrightarrow personal computer
GT09-C30USB-5P (3 m)	- Data transfer cable Cable for connecting between FX5S/FX5UJ CPU module and personal computer through USB communication CPU module (built-in connector for USB communication) \Leftrightarrow personal computer Made by Mitsubishi Electric System \& Service Co., Ltd.

Option/Related Products

Related products Reduced wiring and man-hour saving machines for programmable controllers (FA goods) [manufactured by Mitsubishi Electric Engineering Co., Ltd.]

Mode//external appearance	Description
FA-CBLQ75PM2J3 (2 m) FA-CBLQ75M2J3 (-P) (2 m)	-Connection cable Mitsubishi Electric MR-J3-A/J4-A series -Connectable models FA-CBLQ75PM2J3: FX5-20PG-P FA-CBLQ75M2J3 (-P): FX5-20PG-D
FA-CBLQ75G2 (-P) (2 m)	- Connection cable General-purpose stepping motor, discrete wire cable for servo amplifier - Connectable models FX5-20PG-P, FX5-20PG-D
FA-LTBQ75DP	- Positioning signal conversion module Converts the external device connection signal of the positioning module to the terminal block and converts the signal between the servo amplifiers to the connect.
$\begin{aligned} & \text { FA-CBL05Q7 }(0.5 \mathrm{~m}) \\ & \text { FA-CBL10Q7 }(1 \mathrm{~m}) \end{aligned}$	- Connection cable Positioning module \Leftrightarrow Connection cable between positioning signal conversion modules
FA-CBLQ7PM1J3 (1 m) FA-CBLQ7DM1J3 (1 m)	-Connection cable Positioning signal conversion module \Leftrightarrow Connection cable between servo amplifiers (for Mitsubishi Electric MR-J3-A/J4-A series)
FA-CBLQ7DG1 (1 m)	-Connection cable Positioning signal conversion module \Leftrightarrow Connection cable between servo amplifiers (for general-purpose stepping motor and servo amplifier)

Technical information

Function Block library

The FB library is a set of program parts for PLC.
For Function Block library , please consult your local Mitsubishi representative.
For the specifications and functions of the FB, refer to the attached reference manual and the reference manual for each module.

\diamond Function Block list

Library name	Overview	Compatible CPU module			
		FX5S	FX5UJ	FX5U	FX5UC
FX5 CPU module Function Block	Module FB (for GX Works3) for using the input/output, positioning, serial communication, high-speed counter, and temperature control of the CPU module.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Multiple input module Function Block	The module Function Blocks (for GX Works3) to use the multiple input module (FX5-8AD).	-	\bigcirc	\bigcirc	\bigcirc
Analog input module Function Block	The module Function Blocks (for GX Works3) to use the analog input module (FX5-4AD).	-	\bigcirc	\bigcirc	\bigcirc
Analog output module Function Block	The module Function Blocks (for GX Works3) to use the analog output module (FX5-4DA).	-	\bigcirc	\bigcirc	\bigcirc
FX5 Ethernet-equipped module Function Block	The module Function Blocks (for GX Works3) to use the FX5 Ethernet-equipped module.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
FX5-ENET Ethernet-equipped module Function Block	The module Function Blocks (for GX Works3) to use the FX5 Ethernet module.	-	\bigcirc	\bigcirc	\bigcirc
FX5 EtherNet/IP-equipped module Function Block	The module Function Blocks (for GX Works3) to use the FX5 EtherNet/IP module.	-	\bigcirc	\bigcirc	\bigcirc
CC-Link IE TSN module Function Block	The module Function Blocks (for GX Works3) to use the CC-Link IE TSN module.	-	-	\bigcirc	\bigcirc
CC-Link IE Field Network module Function Block	The module Function Blocks (for GX Works3) to use the CC-Link IE Field Network module.	-	\bigcirc	\bigcirc	\bigcirc
Positioning module Function Block	The module Function Blocks (for GX Works3) to use the positioning module.	-	\bigcirc	\bigcirc	\bigcirc
Simple motion module Function Block	The module Function Blocks (for GX Works3) to use the simple motion module.	-	\bigcirc	\bigcirc	\bigcirc
FB for replacement with FX2N-20GM	FB library for using the functions of FX2N-20GM using the positioning function module (FX5-20PG-口).	-	\bigcirc	\bigcirc	\bigcirc
Statistical analysis Function Block	FB library for statistical analysis using the CPU module.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Cam output control Function Block	FB library for using the cam output control functions using the CPU module.	-	-	\bigcirc	\bigcirc
FB for inverter compatible with CC-Link IE Field Network Basic	FB library for using the inverter compatible with CC-Link IE Field Network Basic through the built-in Ethernet in the CPU module.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
PLCopen Motion Control Function Block	FB library for using the servo amplifier compatible with CC-Link IE Field Network Basic through the Ethernet of the Ethernet-equipped module.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
e-F@ctory Starter Package* Overall equipment effectiveness monitor	Sample program for displaying overall equipment effectiveness, availability, performance rate, finished good ratio, ratio of non-operating time to operating time of equipment, and production information, and for collectively monitoring the equipment operation condition.	-	-	\bigcirc	\bigcirc
e-F@ctory Starter Package* Cylinder \& cycle time measurement monitor	Sample program for measuring and monitoring the cylinder operating time and equipment cycle time.	-	-	\bigcirc	\bigcirc
e-F@ctory Starter Package* Pareto chart for equipment troubles	A sample program that gives priorities to alarms generated by equipment and shows it in a Pareto chart, to make it easier to find the trouble factors which reduce production efficiency.	-	-	\bigcirc	\bigcirc
Predefined protocol support for positioning Function Block (IAI)	FB library for connecting and using the CPU module and IAl's Robo Cylinder via MODBUS RTU communication.	-	-	\bigcirc	\bigcirc
Predefined protocol support for positioning Function Block (SMC)	FB library for connecting and using the CPU module and SMC's electric actuator via MODBUS RTU communication.	-	-	\bigcirc	\bigcirc
Predefined protocol support for positioning Function Block (ORIENTAL MOTOR)	FB library for connecting and using the CPU module and ORIENTAL MOTOR's electric actuator via MODBUS RTU communication.	-	-	\bigcirc	\bigcirc

*: Please consult your local Mitsubishi representative.

Technical information
memo

Overseas Service System

Mitsubishi Electric's Micro PLC Series is a worldwide programmable controller that is used in more than 50 countries all over the world.
For local after-sales services in the overseas countries, "Mitsubishi Electric Global FA Centers" timely provide the best possible products, high technology and reliability services to our customers.

Global FA Center

FA Global Service Network

 "Place contact our FA Center first."For consultation and questions, please contact our FA centers in each country.
With our FA centers in each region of the world as key stations, we provide various services to customers while working closely with local sales offices, branches and agencies.

Detailed information on overseas service

"FA global service" (KK001-EN)
Service contents and contact information of our FA centers are detailed.
For more information on overseas support, please request this document.

Certifications

Certifications

MELSEC iQ-F Series conforms to European Standards (EN) and North American Standards (UL/cUL). Using MELSEC iQ-F Series can reduce the workload to make machines/equipment conform to EN and UL/cUL standards.

Compatible with international standards

The MELSEC iQ-F series conforms to CE marking (Europe) and UL/cUL standard (USA. Canada) and therefore can be used for overseas facilities.

EN standards: Compliance with EC Directives/CE marking

EC directives are issued by the European Council of Ministers for the purpose of unifying European national regulations and smoothing distribution of safe guaranteed products. Approximately 20 types of major EC directives concerning product safety have been issued.
The EMC Directive (Electromagnetic Compatibility Directive), LVD Directive (Low Voltage Directive), RoHS Directive (Restriction of Hazardous Substances Directive), and MD Directive (Machinery Directive) are applied to the programmable controller, which is labeled as an electrical part of a machine product under the EC Directives.

1) EMC Directive

The EMC Directive is a directive that requires products to have "Capacity to prevent output of obstructive noise that adversely affects external devices: Emission damage" and "Capacity to not malfunction due to obstructive noise from external source: Immunity".
2) LVD (Low Voltage Directive)

The LVD Directive is enforced to distribute safe products that will not harm or damage people, objects or assets, etc. With the programmable controller, this means a product that does not pose a risk of electric shock, fire or injury, etc.
3) RoHS Directive

The RoHS Directive is issued by the European Parliament and Council on the restriction of the use of the certain hazardous substances in electrical and electronic equipment. Electrical and electronic equipment products must not include the certain hazardous substances.
4) MD (Machinery Directive)

The MD Directive is for machines and machine parts that may cause injury to the operator due to mechanical moving parts. Safety control equipment must be certified by a recognized body.

Certifications

UL/cUL Standards

UL is the United State's main private safety testing and certification agency for ensuring public safety.
UL sets the safety standards for a variety of fields. Strict reviews and testing are performed following the standards set forth by UL. Only products which pass these tests are allowed to carry the UL Mark.
As opposed to the EN Standards, the UL Standards do not have a legally binding effect. However, they are broadly used as the U.S. safety standards, and are an essential condition for selling products into the U.S.
UL is recognized as a certifying and testing agency by the Canadian Standards Association (CSA). Products evaluated and certified by UL in accordance with Canadian standards are permitted to carry the cUL Mark.
[Precautions on the use in UL/cUL Class I, Division 2 environment]
Products* marking CI. I, DIV. 2 indicating that they can be used in the Class I, Division 2 (filling in a flammable environment in case of abnormalities) on the rating plate can be used in Class I, Division 2 Group A, B, C, and D only. They can be used regardless of the display as long as they do not reach the danger.
Note that when using a product in Class I, Division 2 environment, the following measures need to be taken for the risk of explosion.

- As this product is an open-type device, attach it to the control board suitable for the installation environment and, for opening, to the control board which requires a tool or key.
- Substitution of products other than Class I, Division 2 compatible may result in degradation of Class I, Division 2 compliance. Therefore, do not substitute products other than compatible products.
- Do not disconnect/connect the device or disconnect the external connection terminal except when the power is turned off or where there is no danger.
- Do not open the battery except where it is out of reach of danger.
*: UL explosion-proof standard compliant products are as follows. (Manufactured in October 2017 and after)
- FX5U CPU module

FX5UC-32MT/D, FX5UC-32MT/DSS, FX5UC-64MT/D, FX5UC-64MT/DSS, FX5UC-96MT/D, and FX5UC-96MT/DSS

- FX5 extension module

FX5-C16EX/D, FX5-C16EX/DS, FX5-C16EYT/D, FX5-C16EYT/DSS, FX5-C32EX/D, FX5-C32EX/DS, FX5-C32EYT/D, FX5-C32EYT/DSS, FX5-C32ET/D, FX5-C32ET/DSS, FX5-232ADP, FX5-485ADP, FX5-C1PS-5V, FX5-CNV-BUSC, FX5-4AD-ADP, and FX5-4DA-ADP

Ship standards

The MELSEC iQ-F series complies with the shipping
standards of each country.
It can be used for ship-related machinery and equipment.

Standard abbreviation	Standard name	Target country
DNV	DNV AS	Norway/Germany
RINA	REGISTRO ITALIANO NAVALE	Italy
ABS	American Bureau of Shipping	U.S.A.
LR	Lloyd's Register of Shipping	U.K.
BV	Bureau Veritas	France
NK	Nippon Kaiji Kyokai	Japan
KR	Korea Ship Association	Korea

Korean Certification Mark (KC Mark)

 (products required to be legally certificated for safety, quality, environment, etc.), indicates compliance with various requirements.- KC mark is indicated on FA products, which conform to the Radio Act. Note that other standards are not applicable.

List of compatible products

Model	CE			$\left\lvert\, \begin{aligned} & \mathrm{UL} \\ & \mathrm{CUL} \end{aligned}\right.$	\| KC	Ship approvals						
	EMC	LVD				ABS	DNV\|	LR	BV	RINA	NK	KR
- FX5S CPU modules												
FX5S-30MR/ES	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	-	-	-	-	-
FX5S-30MT/ES	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5S-30MT/ESS	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5S-40MR/ES	\bigcirc	0	\bigcirc	0	0	-	-	-	-	-	-	-
FX5S-40MT/ES	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5S-40MT/ESS	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	-	-	-	-	-
FX5S-60MR/ES	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5S-60MT/ES	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5S-60MT/ESS	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
- FX5UJ CPU modules												
FX5UJ-24MR/ES	\bigcirc	-	0	-								
FX5UJ-24MT/ES	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	0	-
FX5UJ-24MT/ESS	\bigcirc	-	\bigcirc	-								
FX5UJ-40MR/ES	\bigcirc	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-
FX5UJ-40MT/ES	\bigcirc	-	\bigcirc	-								
FX5UJ-40MT/ESS	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	-	0	-
FX5UJ-60MR/ES	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-
FX5UJ-60MT/ES	\bigcirc	-	0	-								
FX5UJ-60MT/ESS	\bigcirc	-	0	-								
- FX5U CPU modules												
FX5U-32MR/ES	\bigcirc											
FX5U-32MT/ES	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc
FX5U-32MT/ESS	\bigcirc	0	\bigcirc	\bigcirc								
FX5U-32MR/DS	\bigcirc											
FX5U-32MT/DS	\bigcirc	\square	\bigcirc									
FX5U-32MT/DSS	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
FX5U-64MR/ES	\bigcirc	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	\bigcirc
FX5U-64MT/ES	\bigcirc	0	0	0	0	0	0	\bigcirc	0	0	\bigcirc	\bigcirc
FX5U-64MT/ESS	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5U-64MR/DS	\bigcirc	0	0	0	\bigcirc							
FX5U-64MT/DS	\bigcirc	\square	\bigcirc									
FX5U-64MT/DSS	\bigcirc	\square	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5U-80MR/ES	\bigcirc											
FX5U-80MT/ES	0	\bigcirc	\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5U-80MT/ESS	\bigcirc											
FX5U-80MR/DS	\bigcirc	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	\bigcirc
FX5U-80MT/DS	\bigcirc	\square	\bigcirc									
FX5U-80MT/DSS	\bigcirc	\square	\bigcirc									
- FX5UC CPU modules												
FX5UC-32MR/DS-TS	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-
FX5UC-32MT/D	\bigcirc	\square	\bigcirc									
FX5UC-32MT/DS-TS	\bigcirc	\square	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5UC-32MT/DSS	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
FX5UC-32MT/DSS-TS	\bigcirc	\square	\bigcirc	0	\bigcirc	\bigcirc						
FX5UC-64MT/D	\bigcirc	\square	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
FX5UC-64MT/DSS	\bigcirc	\square	\bigcirc									
FX5UC-96MT/D	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5UC-96MT/DSS	\bigcirc	\square	\bigcirc									
- FX5 I/O modules (terminal block type)												
FX5-8EX/ES	\bigcirc	\square	\bigcirc	\bigcirc	0	\bigcirc						
FX5-8EYR/ES	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5-8EYT/ES	\bigcirc	\square	\bigcirc									
FX5-8EYT/ESS	\bigcirc	\square	0	0	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	\bigcirc
FX5-16EX/ES	\bigcirc	\square	\bigcirc									
FX5-16EYR/ES	\bigcirc	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	\bigcirc
FX5-16EYT/ES	\bigcirc	\square	\bigcirc									
FX5-16EYT/ESS	\bigcirc	\square	0	0	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	\bigcirc
FX5-16ET/ES-H	\bigcirc	\square	0	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5-16ET/ESS-H	\bigcirc	\square	0	\bigcirc	\bigcirc	0	\bigcirc	0	0	0	\bigcirc	\bigcirc
FX5-16ER/ES	\bigcirc											
FX5-16ET/ES	\bigcirc	\square	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	\bigcirc
FX5-16ET/ESS	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
FX5-32ER/ES	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc
FX5-32ET/ES	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5-32ET/ESS	\bigcirc											
FX5-32ER/DS	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5-32ET/DS	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
FX5-32ET/DSS	\bigcirc	\square	\bigcirc									
- FX5 safety extension module												
FX5-SF-MU4T5*3	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5-SF-8D14*3	\bigcirc	\square	\bigcirc	\bigcirc	0	-	-	-	-	-	-	-

Model	CE				KC	Ship approvals						
	EMC	LVD	RohS			ABS	DNV	LR	BV	RINA	NK	KR
- FX5 I/O modules (connector type)												
FX5-C16EXD	\bigcirc	\square	\bigcirc									
FX5-C16EX/DS	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
FX5-C16EYT/D	\bigcirc	\square	\bigcirc									
FX5-C16EYT/DSS	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
FX5-C16EYR/D-TS	\bigcirc	-	\bigcirc	-								
FX5-C32EXD	0	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5-C32EX/DS	\bigcirc	\square	\bigcirc									
FX5-C32EXVSS-TS	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5-C32EYT/D	\bigcirc	\square	\bigcirc									
FX5-C32EYT/D-TS	0	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
FX5-C32EYT/DSS	\bigcirc	\square	\bigcirc									
FX5-C32EYT/DSS-TS	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	0
FX5-C32ET/D	\bigcirc	\square	\bigcirc									
FX5-C32ET/DS-TS	0	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
FX5-C32ET/DSS	\bigcirc	\square	\bigcirc									
FX5-C32ET/DSS-TS	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
- FX5 intelligent function module												
FX5-4AD	\bigcirc	\square	\bigcirc	-	\bigcirc	-						
FX5-4DA	\bigcirc	\square	\bigcirc	-	\bigcirc	-						
FX5-8AD	\bigcirc	\square	\bigcirc									
FX5-4LC	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5-20PG-P	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5-20PG-D	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5-40SSC-S	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5-80SSC-S	0	\square	0	0	\bigcirc	-	-	-	-	-	-	-
FX5-40SSC-G	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5-80SSC-G	0	\square	\bigcirc	0	\bigcirc	-	-	-	-	-	-	-
FX5-ENET	\bigcirc	\square	\bigcirc	-	\bigcirc	-						
FX5-ENET/IP	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	-	\bigcirc	-
FX5-CCLGN-MS	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5-CCL-MS	\bigcirc	\square	\bigcirc	O*	0	\bigcirc	\bigcirc	\bigcirc	0	-	\bigcirc	-
FX5-CCLIEF	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
FX5-ASL-M	\bigcirc	\square	\bigcirc	\bigcirc	0	-	-	-	-	-	-	-
FX5-DP-M	\bigcirc	\square	\bigcirc	-	\bigcirc	-						
FX5-OPC	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-
- FX5 extension power supply module												
FX5-1PSU-5V	\bigcirc											
FX5-C1PS-5V	\bigcirc	\square	\bigcirc	\bigcirc	0	\bigcirc						
- FX5 bus conversion module												
FX5-CNV-BUS	\bigcirc	\square	\bigcirc									
FX5-CNV-BUSC	\bigcirc	\square	\bigcirc									
- FX5 connector conversion module												
FX5-CNV-IF	\bigcirc	\square	\bigcirc									
FX5-CNV-IFC	\bigcirc	\square	\bigcirc									
- FX5 connector conversion adapter												
FX5-CNV-BC	\bigcirc	\square	\bigcirc	-	\bigcirc							
- FX5 extended extension cable												
FX5-30EC	\square	\square	\bigcirc	-	\square	-	-	-	-	-	-	-
FX5-65EC	\square	\square	\bigcirc	-	\square	-	-	-	-	-	-	-
- FX5 expansion adapter												
FX5-232ADP	\bigcirc	\square	\bigcirc									
FX5-485ADP	0	\square	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
FX5-4A-ADP	\bigcirc	\square	\bigcirc	\bigcirc	0	-	-	-	-	-	-	-
FX5-4AD-ADP	\bigcirc	\square	\bigcirc	\bigcirc	0	\bigcirc						
FX5-4AD-PT-ADP	\bigcirc	\square	\bigcirc									
FX5-4AD-TC-ADP	\bigcirc	\square	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
FX5-4DA-ADP	\bigcirc	\square	\bigcirc	O*2	\bigcirc							
- FX5U expansion board												
FX5-232-BD	\bigcirc	\square	\bigcirc	-	\bigcirc							
FX5-485-BD	\bigcirc	\square	\bigcirc	-	\bigcirc							
FX5-422-BD-GOT	\bigcirc	\square	\bigcirc	-	\bigcirc							
FX5-SDCD	\bigcirc	\square	\bigcirc	-	\bigcirc	-	-	-	-	-	-	-

O : Compliant with standards or self-declaration \square : No need to comply
*1: The products (product number: 1760001) manufactured in June 2017 and after complies with the UL standards (UL, CUL).
*2: The products (product number: 1660001) manufactured in June 2016 and after complies with the UL standards (UL, cUL).
*3: Complies with the CE Machinery Directive (MD).

Performance Specifications

FX5S CPU module performance specifications

*1. Th
*2: Clock data is retained using the power accumulated in a large-capacity capacitor incorporated into the PLC. When voltage of the large-capacity capacitor drops, clock data is no longer accurately retained. The retention period of a fully charged capacitor (electricity is conducted across the PLC for at least 30 minutes) is 15 days (ambient temperature: $25^{\circ} \mathrm{C}$). How long the capacitor can hold the data depends on the operating ambient temperature. When the operating ambient temperature is high, the holding period is short.

Number of device points

Item			Base	Max. number of points	
No. of user device points	Input relay (X)		8	1024 points or less	The total number of X and Y assigned to input/output points is up to 60 points.
	Output relay (Y)		8	1024 points or less	
	Internal relay (M)		10	32768 points (can be changed with a parameter)**	
	Latch relay (L)		10	32768 points (can be changed with a parameter)**	
	Link relay (B)		16	32768 points (can be changed with a parameter)**	
	Annunciator (F)		10	32768 points (can be changed with a parameter)**	
	Link special relay (SB)		16	32768 points (can be changed with a parameter)**	
	Step relay (S)		10	4096 points (fixed)	
	Timer system	Timer (T)	10	1024 points (can be changed with a parameter)*1	
	Accumulation timer system	Accumulation timer (ST)	10	1024 points (can be changed with a parameter)*1	
	Counter system	Counter (C)	10	1024 points (can be changed with a parameter)*1	
		Long counter (LC)	10	1024 points (can be changed with a parameter)*1	
	Data register (D)		10	8000 points (can be changed with a parameter)*1	
	Link register (W)		16	32768 points (can be changed with a parameter)**	
	Link special register (SW)		16	32768 points (can be changed with a parameter)**	
No. of system device points	Special relay (SM)		10	10000 points (fixed)	
	Special register (SD)		10	12000 points (fixed)	
No. of index register points	Index register (Z) ${ }^{* 2}$		10	24 points	
	Long index register (LZ)*2		10	12 points	
No. of file register points	File register (R)		10	32768 points (can be changed with a parameter)**	
	Extended file register (ER)		10	32768 points (are stored in SD memory card)	
No. of nesting points	Nesting (N)		10	15 points (fixed)	
No. of pointer points	Pointer (P)		10	4096 points	
	Interrupt pointer (l)		10	32 points	
Others	Decimal constant (K)	Signed	-	16 bits: -32768 to $+32767,32$ bits: -2147483648 to +2147483647	
		Unsigned	-	16 bits: 0 to 65535,	bits: 0 to 4294967295
	Hexadecimal constant (H)		-	16 bits: 0 to FFFF, 32 bits: 0 to FFFFFFFF	
	Real constant (E)	Single precision	-	E-3.40282347+38 to E-1.17549435-38, 0, E1.17549435-38 to E3.40282347+38	
	Character string		-	Shift-JIS code max. 255 single-byte characters (256 including NULL) Unicode max. 255 characters (256 including NULL)	

[^66]
Performance Specifications

FX5UJ CPU module performance specifications

Items		Specifications
Control system		Stored-program repetitive operation
Input/output control system		Refresh system (Direct access input/output allowed by specification of direct access input/output [DX, DY])
Programming specifications	Programming language	Ladder diagram (LD), structured text (ST), function block diagram/ladder diagram (FBD/LD)
	Programming expansion function	Function block (FB), function (FUN), label programming (local/global)
	Constant scan	0.5 to 2000 ms (can be set in $0.1 \mathrm{~ms} \mathrm{increments)}$
	Fixed cycle interrupt	1 to 60000 ms (can be set in 1 ms increments)
	Timer performance specifications	$100 \mathrm{~ms}, 10 \mathrm{~ms}, 1 \mathrm{~ms}$
	No. of program executions	32
	No. of FB files	16 (Up to 15 for user)
Operation specifications	Execution type	Standby type, initial execution type, scan execution type, event execution type
	Interrupt type	Internal timer interrupt, input interruption, high-speed comparison match interrupt, interrupt by modules*1
Command processing time	LD X0	34 ns
	MOV D0 D1	34 ns
Memory capacity	Program capacity	48 k steps (96 kbytes, flash memory)
	SD memory card	Memory card capacity (SD/SDHC memory card: Max. 16 Gbytes)
	Device/label memory	120 kbytes
	Data memory/standard ROM	5 Mbytes
Flash memory (Flash ROM) write count		Maximum 20000 times
File storage capacity	Device/label memory	1
	Data memory $P:$ No. of program files FB: No. of FB files	P: 32, FB: 16
	SD memory card	NZ1MEM-2GBSD: 511*2
		NZ1MEM-4GBSD, NZ1MEM-8GBSD, NZ1MEM-16GBSD: 65534*2
Clock function	Display data	Year, month, day, hour, minute, second, day of week (leap year automatic detection)
	Precision	Differences per month $\pm 45 \mathrm{sec} . / 25^{\circ} \mathrm{C}$ (TYP)
No. of input/output points	(1) No. of input/output points	256 points or less
	(2) No. of remote I/O points	256 points or less
	Total No. of points of (1) and (2)	256 points or less
Power failure retention (clock data*3)	Retention method	Large-capacity capacitor
	Retention time	15 days (Ambient temperature: $25^{\circ} \mathrm{C}$)
Power failure retention (device)	Power failure retention capacity	Maximum 12 k word

*1: Interrupt from the intelligent function module and high-speed pulse input/output module.
*2: The value listed above indicates the number of fi les stored in the root folder.
$* 3$: Clock data is retained using the power accumulated in a large-capacity capacitor incorporated into the PLC. When voltage of the large-capacity capacitor drops, clock data is no longer accurately retained. The retention period of a fully charged capacitor (electricity is conducted across the PLC for at least 30 minutes) is 15 days (ambient temperature: $25^{\circ} \mathrm{C}$). How long the capacitor can hold the data depends on the operating ambient temperature. When the operating ambient temperature is high, the holding period is short.

Number of device points

Items			Base		Max. number of points*1
No. of user device points	Input relay (X)		8	1024 points	The total number of X and Y assigned to input/output points is up to 256 points.
	Output relay (Y)		8	1024 points	
	Internal relay (M)		10	7680 points	
	Latch relay (L)		10	7680 points	
	Link relay (B)		16	2048 points	
	Annunciator (F)		10	128 points	
	Link special relay (SB)		16	2048 points	
	Step relay (S)		10	4096 points	
	Timer system	Timer (T)	10	512 points	
	Accumulation timer system	Accumulation timer (ST)	10	16 points	
	Counter system	Counter (C)	10	256 points	
		Long counter (LC)	10	64 points	
	Data register (D)		10	8000 points	
	Link register (W)		16	1024 points	
	Link special register (SW)		16	1024 points	
No. of system device points	Special relay (SM)		10	10000 points	
	Special register (SD)		10	12000 points	
Module access device	Intelligent function module device		10	Depends on th	elligent function module.
No. of index register points	Index register (Z)		10	20 points	
	Long index register (LZ)		10	2 points	
No. of file register points	File register (R)		10	32768 points	
	Extended file register (ER)		10	32768 points	ored in SD memory card)
No. of nesting points	Nesting (N)		10	15 points	
No. of pointer points	Pointer (P)		10	2048 points	
	Interrupt pointer (l)		10	178 points	
Others	Decimal constant (K)	Signed	-	$\begin{aligned} & 16 \text { bits: - } 3276 \\ & 32 \text { bits: -2147 } \end{aligned}$	$\begin{aligned} & 32767, \\ & 48 \text { to }+2147483647 \\ & \hline \end{aligned}$
		Unsigned	-	$\begin{aligned} & 16 \text { bits: } 0 \text { to } 6 \\ & 32 \text { bits: } 0 \text { to } 4 \end{aligned}$	
	Hexadecimal constant (H)		-	16 bits: 0 to 32 bits: 0 to	
	Real constant (E)	Single precision	-	E-3.40282347	E-1.17549435-38, 0, E1.17549435-38 to E3.40282347+38
	Character string		-	Shift-JIS code Unicode max	255 single-byte characters (256 including NULL) characters (256 including NULL)*2

FX5U/FX5UC CPU module performance specifications

Items		Specifications
Control system		Stored-program repetitive operation
Input/output control system		Refresh system (Direct access input/output allowed by specification of direct access input/output [DX, DY])
Programming specifications	Programming language	Ladder diagram (LD), structured text (ST), function block diagram/ladder diagram (FBD/LD), sequential function chart (SFC)*1
	Programming expansion function	Function block (FB), function (FUN), label programming (local/global)
	Constant scan	0.2 to 2000 ms (can be set in $0.1 \mathrm{~ms} \mathrm{increments)}$
	Fixed cycle interrupt	1 to 60000 ms (can be set in 1 ms increments)
	Timer performance specifications	$100 \mathrm{~ms}, 10 \mathrm{~ms}, 1 \mathrm{~ms}$
	No. of program executions	32
	No. of FB files	16 (Up to 15 for user)
Operation specifications	Execution type	Standby type, initial execution type, scan execution type, fixed-cycle execution type, event execution type
	Interrupt type	Internal timer interrupt, input interruption, high-speed comparison match interrupt, interrupt by module*2
Command processing time	LD XO	34 ns*3
	MOV D0 D1	$34 \mathrm{ns*3}$
Memory capacity	Program capacity	$64 \mathrm{k} / 128 \mathrm{k}$ steps*4 (128 kbytes/256 kbytes, flash memory)
	SD memory card	Memory card capacity (SD/SDHC memory card: Max. 16 Gbytes)
	Device/label memory	150 kbytes*5
	Data memory/standard ROM	5 Mbytes
Flash memory (Flash ROM) write count		Maximum 20000 times
File storage capacity	Device/label memory	1
	Data memory P: No. of program files FB: No. of FB files	P: 32, FB: 16
	SD memory card	NZ1MEM-2GBSD: 511*6
		NZ1MEM-4GBSD, NZ1MEM-8GBSD, NZ1MEM-16GBSD: 65534*6
Clock function	Display data	Year, month, day, hour, minute, second, day of week (leap year automatic detection)
	Precision	Differences per month $\pm 45 \mathrm{sec} . / 25^{\circ} \mathrm{C}$ (TYP)
No. of input/output points	(1) No. of input/output points	256 points or less/384 points or less*4
	(2) No. of remote I/O points	384 points or less/512 points or less*4
	Total No. of points of (1) and (2)	512 points or less
Power failure retention (clock data*)	Retention method	Large-capacity capacitor
	Retention time	10 days (Ambient temperature: $25^{\circ} \mathrm{C}$)
Power failure retention (device)	Power failure retention capacity	Maximum 12 k word*8

*1: Supported in the FX5U/FX5UC CPU module firmware version 1.220 or later. In addition, GX Works3 version 1.070Y or later is required.
*2: Interrupt from the intelligent function module and high-speed pulse input/output module.

* 4. Supported in FX5 M FX5 64 k steps
*4: Supported in the FX5U/FXSUC CPU module firmware version 1.100 or later. In addition, GX Works3 version 1.047 Z or later is required
*5: Supported in the FX5U/FX5UC CPU module firmware version 1.210 or later. In addition, GX Works3 version 1.065T or later is required.
*7. Clo
. When voltage of the large-capacity capacitor drops, clock data is $25^{\circ} \mathrm{C}$) How long the retained. The retention period of a furly charged capacitor (electricity is conducted across the PLC for at least 30 minutes) is 10 days (ambient temperature:
*8: All devices in the device (high-speed) area can be held against power failure. Devices in the device (standard) area can be held also when the optional battery is mounted.

Number of device points

	Items		Base	Max. number of points		
No. of user device points	$\frac{\text { Input relay (X) }}{\text { Output relay }(Y)}$		8	1024 points	The total number of X and Y assigned to input/output points is up to 256 points/ 384 points*1.	
			8	1024 points		
	Internal relay (M)		10	32768 points	ged with parameter)*2	
	Latch relay (L)		10	32768 points	ged with parameter)*2	
	Link relay (B)		16	32768 points	ged with parameter)*2	
	Annunciator (F)		10	32768 points	ged with parameter)*2	
	Link special relay (SB)		16	32768 points	ged with parameter)*2	
	Step relay (S)		10	4096 points (fixed)		
	Timer system Timer (T)		10	1024 points (can be changed with parameter)*2		
	Accumulation timer system	Accumulation timer (ST)	10	1024 points (can be changed with parameter)*2		
	Counter system	Counter (C)	10	1024 points (can be changed with parameter)**		
		Long counter (LC)	10	1024 points (ed with parameter)*2	
	Data register (D)		10	8000 points (can be changed with parameter)*2		
	Link register (W)		16	32768 points (can be changed with parameter)*2		
	Link special register (SW)		16	32768 points (can be changed with parameter)*2		
No. of system device points	Special relay (SM)		10	10000 points (fixed)		
	Special register (SD)		10	12000 points (fixed)		
Module access device	Intelligent function module device		10	65536 points (designated by Uप\G])		
No. of index register points	Index register (Z)*3		10	24 points		
No. of index register points	Long index register (LZ)*3		10	12 points		
	File register (R)		10	32768 points (can be changed with parameter)*2		
No. of fle register points	Extended file register (ER)		10	32768 points (are stored in SD memory card)		
No. of nesting points	Nesting (N)		10	15 points (fixed)		
No. of pointer points	Pointer (P)		10	4096 points		
	Interrupt pointer (I)		10	178 points (fixed)		
No. of SFC points	SFC block device (BL)		10	32 points		
	SFC transition device (TR)		10	0 points (Used only as device comments.)		
Others	Decimal constant (K)	Signed	-	16 bits: -32768 to +32767,32 bits: -2147483648 to +2147483647		
		Unsigned	-	16 bits: 0 to 32 bits: 0 to		
	Hexadecimal constant (H)		-	16 bits: 0 to FFFF, 32 bits: 0 to FFFFFFFF		
	Real constant (E)	Single precision	-	Shift-JIS code max. 255 single-byte characters (256 including NULL) Unicode max. 255 characters (256 including NULL)**4		
	Character string		-			

List of Instructions

CPU module application instruction

Classication	Instruction symbol	Function	Compatible CPU module			
			FX5S	PX6UJ	FXEU	PXEUC
Rotation	ROR(P)	16-bit data right rotation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	RCR(P)	Right rotation with 16-bit data carry	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ROL(P)	16-bit data left rotation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	RCL(P)	Left rotation with 16-bit data carry	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DROR(P)	32-bit data right rotation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DRCR(P)	Right rotation with 32-bit data cary	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DROL(P)	32-bit data left rotation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DRCL(P)	Left rotation with 32-bit data carry	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Program branch	CJ(P)	Pointer branch	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	GOEND	Jump to END	0	\bigcirc	\bigcirc	\bigcirc
Program execution control	DI	Interrupt disable	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	El	Interrupt enable	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DI	Interrupt disable when lower than specified priority	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	IMASK	Interupt program mask	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SIMASK	Specified interrupt pointer disable/enable	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	IRET	Return from interrupt program	0	\bigcirc	\bigcirc	\bigcirc
	WDT(P)	WDT reset	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Structured instruction	FOR	Executed (n) times between ROM instruction and NEXT instruction	0	\bigcirc	\bigcirc	\bigcirc
	NEXT		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	BREAK(P)	FOR to NEXT forced end	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	CALL(P)	Subroutine program call	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	RET	Return from subroutine program	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SRET		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	XCALL	Subroutine program call	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Data table operation	SFRD(P)	First-in data read from data table	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	POP(P)	Last-in data read from data table	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SFWR(P)	Data write to data table	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	FINS(P)	Data insertion to data table	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	FDEL(P)	Data delete from data table	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Reading/ writing data	S(P).DEVLD	Reading data from the data memory	-	\bigcirc	\bigcirc	\bigcirc
	SP.DEVST	Writing data to the data memory	-	\bigcirc	\bigcirc	\bigcirc
File operation instructions	SP.FREAD	Reading data from the specified file	0	\bigcirc	\bigcirc	\bigcirc
	SP.FWRITE	Writing data to the specified file	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SP.FDELETE	Deleting the specified file	\bigcirc	0	\bigcirc	\bigcirc
	SP.FCOPY	Copying the specified file	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SP.FMOVE	Moving the specified file	0	0	\bigcirc	\bigcirc
	SP.FRENAME	Renaming the specified file	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SP.FSTATUS	Acquiring the status of the specified file	0	0	\bigcirc	\bigcirc
Extended file register operation instruction	ERREAD	Reading extended file register	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ERWRITE	Writing extended file register	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ERINIT	Batch initialization function of extended file register	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Character string processing	LD\$=	Character string comparison LD (S1) $=(\mathrm{S} 2)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LD\$<>	Character string comparison LD (S1) <> (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LD\$>	Character string comparison LD (S1) > (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LD\$<=	Character string comparison LD (S1) <= (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LD\$<	Character string comparison LD (S1) < (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LD\$>=	Character string comparison LD (S1) >= (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	AND\$ $=$	Character string comparison AND (S1) = (S2)	0	\bigcirc	O	\bigcirc
	AND\$<>	Character string comparison AND (S1) <> (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	AND\$>	Character string comparison AND (S1) > (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	AND\$<=	Character string comparison AND (S1) <= (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	AND\$<	Character string comparison AND (S1) < (S2)	0	0	\bigcirc	\bigcirc
	AND\$>=	Character string comparison AND (S1) >= (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	OR\$=	Character string comparison OR (S1) = (S2)	0	0	0	\bigcirc
	OR\$ ${ }^{\text {< }}$ >	Character string comparison OR (S1) <> (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ORS>	Character string comparison OR (S1) > (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	OR\$<=	Character string comparison OR (S1) <= (S2)	0	\bigcirc	\bigcirc	\bigcirc
	OR\$<	Character string comparison OR (S1) < (S2)	0	\bigcirc	0	\bigcirc
	OR\$>=	Character string comparison OR (S1) >= (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	\$+(P)	Combination of character strings	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	\$MOV(P)	Transfer of character string	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \text { \$MOV(P)_ } \\ & \text { WS } \end{aligned}$	Transferring Unicode string data	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	BINDA(P)(U)	BIN 16-bit data \rightarrow Decimal ASCII conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DBINDA(P) (U)	BIN 32-bit data \rightarrow Decimal ASCII conversion	0	0	0	\bigcirc
	ASCIP)	HEX code data - ASCII conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\operatorname{STR}(P)(U)$	BIN 16-bit data \rightarrow Character string conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DSTR(P)(LU)	BIN 32-bit data \rightarrow Character string conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ESTR(P)	Single precision actual number \rightarrow Character string conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DESTR(P)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	WS2SUIS(P)	Converting Unicode character string to Shift JIS character string	\bigcirc	\bigcirc	\bigcirc	\bigcirc

O: Supported, -: Not supported
For sequence instructions and basic instructions, refer to manuals.

Cassitication	Instruction symbol	Function	Compatible CPU module			
			776S	FKW	R6U	xave
Character string processing	SUIS2WS(P)	Converting shift JIS character string to Unicode character string (without byte order mark)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SUIS2WSB(P)	Converting shift JIS character string to Unicode (with byte order mark)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LEN(P)	Detection of character string length	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	RIGHT(P)	Extraction from right side of character string	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LEFT(P)	Extraction from left side of character string	0	\bigcirc	\bigcirc	\bigcirc
	MIDR(P)	Extraction of any part from the middle of character string	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	MIDW(P)	Replacement of any part in the middle of character string	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	INSTR(P)	Character string search	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	STRINS(P)	Character string insertion	0	\bigcirc	0	0
	STRDEL(P)	Character string deletion	0	\bigcirc	\bigcirc	\bigcirc
Actual number	LDES=	Single precision actual number comparison LDE (S1) = (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LDES<>	Single precision actual number comparison LDE (S1) \gg (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LDES>	Single precision actual number comparison LDE (S1) $>$ (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LDES<=	Single precision actual number comparison LDE (S1) $<=(S 2)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LDES<	Single precision actual number comparison LDE (S1) $>$ (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LDES>=	Single precision actual number comparison LDE (S1) $>=(S 2)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDE\$ $=$	Single precision actual number comparison ANDE $(S 1)=(S 2)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDES<>	Single precision actual number comparison ANDE (S1) $<$ (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDE\$>	Single precision actual number comparison ANDE (S1) >(S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDES<=	Single precision actual number comparison ANDE (S1) $==($ S2 $)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDE\$<	Single precision actual number comparison ANDE (S1) < (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDES>=	$\begin{array}{l}\text { Single precision actual number comparison ANDE (S1) } \\ >=(\mathrm{S} 2)\end{array}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ORE\$=	$\begin{aligned} & \text { Single precision actual number comparison ORE (S1) } \\ & \text { = (S2) } \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ORES<>	Single precision actual number comparison ORE (S1) < (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ORE\$>	Single precision actual number comparison ORE (S1) $>(S 2)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ORE\$<=	Single precision actual number comparison ORE (S1) $<=(\mathrm{S} 2)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ORES<	Single precision actual number comparison ORE (S1) (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ORE\$>=	$\begin{aligned} & \text { Single precision actual number comparison ORE (S1) } \\ & >=(\text { S2 })\end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DECMP(P)	Single precision actual number comparison	\bigcirc	\bigcirc	\bigcirc	0
	DEZCP(P)	Binary floating point bandwidth comparison	0	0	0	\bigcirc
	E+(P)	Single precision actual number addition	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	E-(P)	Single precision actual number subtraction	0	\bigcirc	0	0
	DEADD(P)	Single precision actual number addition	\bigcirc	\bigcirc	\bigcirc	0
	DESUB(P)	Single precision actual number subtraction	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\mathrm{E}^{*}(\mathrm{P})$	Single precision actual number multipication	0	\bigcirc	0	\bigcirc
	E/P)	Single precision actual number division	0	\bigcirc	0	0
	DEMUL(P)	Single precision actual number multiplication	\bigcirc	\bigcirc	\bigcirc	0
	DEDIV(P)	Single precision actual number division	0	0	0	0
	INT2FLT(P)	Signed BIN 16 -bit data \rightarrow Single precision actual number conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	UINT2FLT(P)	Unsigned BIN 16-bit data \rightarrow Single precision actual number conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DINT2FLT(P)	Signed BIN 32-bit data \rightarrow Single-precision real number conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	UDINT2FLT(P)	Unsigned BIN 32-bit data \rightarrow Single precision actual number conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	EVALP)	Character string \rightarrow Single precision actual number conversion	0	\bigcirc	\bigcirc	\bigcirc
	DEVAL(P)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DEBCD(P)	Binary floating point \rightarrow Decimal floating point conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DEBIN(P)	Decimal floating point \rightarrow Binary floating point conversion	\bigcirc	\bigcirc	\bigcirc	
	ENEG(P)	Reverse of single precision actual number sign	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DENEG(P)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	EMOV(P)	Transfer of single precision actual number data	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DEMOV(P)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SIN(P)	Single precision actual number SIN operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DSIN(P)		0	\bigcirc	0	\bigcirc
	$\cos (P)$	Single precision actual number COS operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DCOS(P)		\bigcirc	\bigcirc	0	\bigcirc

Classitation	Instruction symbol	Function	Compatible CPU module			
			FX5S	FXGUU	Fx̌u	xuuc
Actual number	TAN(P)	Single precision actual number TAN operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DTAN(P)		0	0	\bigcirc	\bigcirc
	ASIN(P)	Single precision actual number SIN^{-1} operation	0	\bigcirc	\bigcirc	\bigcirc
	DASIN(P)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ACOS(P)	Single precision actual number COS^{-1} Operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DACOS(P)		0	O	0	\bigcirc
	ATAN(P)	Single precision accuracy TAN-1 ${ }^{-1}$ operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DATAN(P)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	RAD(P)	Single precision actual number angle \rightarrow Radian conversion	\bigcirc	O	\bigcirc	\bigcirc
	DRAD(P)		0	\bigcirc	\bigcirc	\bigcirc
	DEG(P)	Single precision actual number radian \rightarrow Angle conversion	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DDEG(P)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DESQR(P)	Square root of single precision actual number	\bigcirc	\bigcirc	0	\bigcirc
	ESQRT(P)		\bigcirc	-	\bigcirc	\bigcirc
	EXP(P)	Index operation of single precision actual number	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DEXP(P)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LOG(P)	Inferior logarithm operation of single precision actual number	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DLOGE(P)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	POW(P)	Exponentiation operation of single precision actual number	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LOG10(P)	Common logarithm operation of single precision actual number	0	\bigcirc	\bigcirc	\bigcirc
	DLOG10(P)		\bigcirc	\bigcirc	0	\bigcirc
	EMAX(P)	Search for maximum value of single precision actual number	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	EMIN(P)	Search for minimum value of single precision actual number	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Random number	RND(P)	Random number generation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Index register operation	ZPUSH(P)	Collective saving of index register	0	\bigcirc	\bigcirc	\bigcirc
	ZPOP(P)	Corrective return of index register	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ZPUSH(P)	Selection and saving of index register/long index register	\bigcirc	\bigcirc	O	\bigcirc
	ZPOP(P)	Selection and return of index register/long index register	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Data control	LIMIT(P)(U)	BIN 16-bit data upper-lower-limit control	0	\bigcirc	\bigcirc	O
	DLIMTP(P)(U)	BIN 32-bit data upper-/lower-limit control	0	\bigcirc	\bigcirc	\bigcirc
	BAND(P)(U)	BIN 16-bit data dead band control	0	\bigcirc	\bigcirc	\bigcirc
	DBAND(P)(U)	BIN 32-bit data dead band control	\bigcirc	\bigcirc	\bigcirc	-
	ZONE(P)(U)	BIN 16-bit data zone control	0	\bigcirc	\bigcirc	\bigcirc
	DZONE(P)(U)	BIN 32-bit data zone control	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SCL(P)(LU)	BIN 16-bit unit scaling (point-specific coordinate data)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DSCL(P)(U)	BIN 32-bit unit scaling (point-specific coordinate data)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SCL2(P)(U)	BIN 16-bit unit scaling (X- Y -specific coordinate data)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DSCL2(P)(U)	BIN 32-bit unit scaling (X - N-specific coordinate data)	\bigcirc	\bigcirc	O	\bigcirc
Special timer	TMR	Teaching timer	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	STMR	Special function timer	0	\bigcirc	\bigcirc	\bigcirc
Special counter	UDCNTF	Signed 32-bit up/down counter	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Shortcut control	ROTC	Rotary table shortcut control	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Inclination signal	RAMPF	Control inclination signal	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Pulse system	SPD	Measurement of BIN 16-bit pulse density	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DSPD	Measurement of BIN 32-bit pulse density	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	PLSY	BIN 16-bit pulse output	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DPLSY	BIN 32-bit pulse output	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	PWM	BIN 16 pulse width modulation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DPWM	BIN 32-bit pulse width modulation	0	\bigcirc	0	\bigcirc
Matrix input	MTR	Matrix input	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Initial state	IST	Initial state	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Drum sequence	ABSD	BIN 16-bit data absolute method	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DABSD	BIN 32 -bit data absolute method	0	0	\bigcirc	\bigcirc
	INCD	Relative method	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Check code	CCD(P)	Check code	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Data processing instruction	SERMM(P)	Data processing instruction	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DSERMM(P)	32-bit data search	0	0	\bigcirc	0
	SUM(P)	16-bit data bit check	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DSUM(P)	32-bit data bit check	\bigcirc	\bigcirc	\bigcirc	0
	BON(P)	Bit detection of 16-bit data	0	\bigcirc	\bigcirc	\bigcirc
	DBON(P)	Bit detection of 32-bit data	\bigcirc	\bigcirc	0	\bigcirc
	$\operatorname{MAXP}(\mathrm{P})(\mathrm{U})$	Search for maximum value of 16-bit data	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DMAX(P)(U)	Search for maximum value of 32-bit data	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	MIN(P)(U)	Search for minimum value of 16 -bit data	0	\bigcirc	\bigcirc	\bigcirc
	DMIN(P)(U)	Search for minimum value of 32 -bit data	0	\bigcirc	0	\bigcirc
	SORTTBLIU)	16-bit data sort	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SORTTBL2(U)	16-bit data alignment 2	0	\bigcirc	\bigcirc	\bigcirc
	DSORTBLLCU	32-bit data alignment 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	WSUM(P)(U)	16 -bit data total value calculation	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Classication	Instruction symbol	Function	CompatibleCPU module			
			PXSS	FXGU	PKU	Pxalo
Data processing instruction	DWSUMP(I)(U)	32-bit data total value calculation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	MEAN(P)(U)	16-bit data average value calculation	\bigcirc	0	\bigcirc	0
	DMEANP(P) U) $^{\text {a }}$	32-bit data average value calculation	\bigcirc	0	\bigcirc	0
	SQRT(P)	Calculation of 16-bit square root	\bigcirc	0	\bigcirc	0
	DSQRT(P)	Calculation of 32-bit square root	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	CRC(P)	CRC calculation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Indirect address read	ADRSET(P)	Indirect address read	\bigcirc	\bigcirc	\bigcirc	\bigcirc
For clock	TRD(P)	Clock data read	\bigcirc	0	0	0
	TWR(P)	Clock data write	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	TADD(P)	Addition of clock data	-	0	\bigcirc	0
	TSUB(P)	Subtraction of clock data	O	\bigcirc	\bigcirc	\bigcirc
	HTOS(P)	16-bit data conversion of time data (hour/minute/second \rightarrow second)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DHTOS(P)	32-bit data conversion of time data (hour/minute/second \rightarrow second)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	STOH(P)	16 -bit data conversion of time data (second \rightarrow hour/minute/second)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DSTOH(P)	32-bit data conversion of time data (second \rightarrow hour/minute/second)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LDDT\$=	Date comparison LDDT (S1) = (S2)	\bigcirc	0	\bigcirc	0
	LDDT\$<>	Date comparison LDDT (S1) <> (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LDDT\$>	Date comparison LDDT (S1) > (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LDDT\$<=	Date comparison LDDT (S1) < = (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LDDT\$<	Date comparison LDDT (S1) < (S2)	\bigcirc	\bigcirc	\bigcirc	0
	LDDT\$>=	Date comparison LDDT (S1) >= (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDDTS=	Date comparison ANDDT (S1) = (S2)	\bigcirc	0	\bigcirc	0
	ANDDT\$>>	Date comparison ANDDT (S1) <> (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDDT\$>	Date comparison ANDDT (S1) >(S2)	\bigcirc	0	\bigcirc	\bigcirc
	ANDDT\$<=	Date comparison ANDDT (S1) <= (S2)	\bigcirc	\bigcirc	\bigcirc	0
	ANDDTS<	Date comparison ANDDT (S1) < (S2)	\bigcirc	0	\bigcirc	0
	ANDDT\$> $=$	Date comparison ANDDT (S1) >= (S2)	\bigcirc	0	\bigcirc	0
	ORDTS=	Date comparison ORDT (S1) = (S2)	\bigcirc	0	\bigcirc	0
	ORDTS<>	Date comparison ORDT (S1) <> (S2)	\bigcirc	\bigcirc	\bigcirc	0
	ORDT\$>	Date comparison ORDT (S1) > (S2)	\bigcirc	0	\bigcirc	0
	ORDTS<=	Date comparison ORDT (S1) < = (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ORDT\$<	Date comparison ORDT (S1) < (S2)	\bigcirc	0	\bigcirc	0
	ORDTS>=	Date comparison ORDT (S1) >= (S2)	\bigcirc	0	\bigcirc	0
	LDTM $\$=$	Time comparison LDTM (S1) = (S2)	\bigcirc	0	\bigcirc	0
	LDTM\$く>	Time comparison LDTM (S1) <> (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	LDTMS>	Time comparison LDTM (S1) > (S2)	\bigcirc	0	\bigcirc	0
	LDTM \ll	Time comparison LDTM (S1) <= (S2)	\bigcirc	0	\bigcirc	\bigcirc
	LDTM\$<	Time comparison LDTM (S1) < (S2)	\bigcirc	0	\bigcirc	0
	LDTM\$>=	Time comparison LDTM (S1) >=(S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDTM $\$=$	Time comparison ANDTM (S1) = (S2)	\bigcirc	0	\bigcirc	0
	ANDTM\$<>	Time comparison ANDTM (S1) >> (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDTM\$>	Time comparison ANDTM (S1) >(S2)	\bigcirc	0	\bigcirc	0
	ANDTM\$<=	Time comparison ANDTM (S1) <= (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ANDTM\$<	Time comparison ANDTM (S1) < (S2)	\bigcirc	0	\bigcirc	0
	ANDTM\$>=	Time comparison ANDTM (S1) >> (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ORTM $=$	Time comparison ORTM (S1) = (S2)	\bigcirc	0	\bigcirc	0
	ORTM $<$ <>	Time comparison ORTM (S1) <> (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ORTM\$>	Time comparison ORTM (S1) > (S2)	\bigcirc	0	\bigcirc	0
	ORTM\$<=	Time comparison ORTM (S1) <= (S2)	\bigcirc	0	\bigcirc	\bigcirc
	ORTMS<	Time comparison ORTM (S1) < (S2)	\bigcirc	0	\bigcirc	0
	ORTM\$>=	Time comparison ORTM (S1) >= (S2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	TCMP(P)	Clock data comparison	\bigcirc	0	\bigcirc	0
	TZCP(P)	Clock data bandwidth comparison	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { Timing } \\ & \text { measurement } \end{aligned}$	DUTY	Timing pulse generation	\bigcirc	0	\bigcirc	0
	HOURM	Hour meter (BIN 16-bit data)	\bigcirc	0	\bigcirc	0
	DHOURM	Hour meter (BIN 32-bit data)	\bigcirc	0	\bigcirc	0
Module access	REFP(P)	I/O refresh	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	RFS(P)		\bigcirc	0	\bigcirc	\bigcirc
	FROM(P)	Read of 1 -word data from other module (16-bit specified)	-	\bigcirc	\bigcirc	\bigcirc
	DFROM(P)	Read of 2-word data from other module (16-bit specified)	-	\bigcirc	\bigcirc	\bigcirc
	TO(P)	Write of 1 -word data from other module (16-bit specified)	-	\bigcirc	\bigcirc	\bigcirc
	DTO(P)	Write of 2-word data from other module (16-bit specified)	-	\bigcirc	\bigcirc	\bigcirc
	FROMD(P)	Read of 1 -word data from other module (32-bit specified)	-	\bigcirc	\bigcirc	\bigcirc
	DFROMD(P)	Read of 2-word data from other module (32-bit specified)	-	\bigcirc	\bigcirc	\bigcirc
	TOD(P)	Write of 1 -word data from other module (32-bit specified)	-	\bigcirc	\bigcirc	\bigcirc
	DTOD(P)	Write of 2-word data from other module (32-bit specified)	-	\bigcirc	\bigcirc	\bigcirc
Logging	LOGTRG	Setting trigger logging	\bigcirc	0	\bigcirc	0
	LOGTRGR	Resetting trigger logging	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Real-time monitor function	RTM	Real-time monitor function	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Step ladder instruction

Classification	Instruction symbol	Function	Compatible CPU module			
			F65	PXGU	PKU	FXGUC
Step ladder	STL	Start of step ladder	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	RETSTL	End of step ladder	\bigcirc	0	0	0

Ethernet instruction

Classification	Instruction symbol	Function	Compatible CPU module			
			FX5S	FX5UU	FX5U	FXSUC
Built-in Ethernet function instruction	SP.SOCOPEN	Connection establishment	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SP.SOCCLOSE	Connection disconnection	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Socket Communication function	SP.SOCRCV	Read of received data during END processing	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SP.SOCSND	Data transmission	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SP.SOCCINF	Read of connection information	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S(P).SOCRDATA	Read of received data of socket communication	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Communication protocol support function	SP.ECPRTCL	Execution of registration protocol of communication protocol support function	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SLMP frame transmission	SP.SLMPSND	SLMP message transmission to SLMPcompatible device	\bigcirc	\bigcirc	\bigcirc	\bigcirc
File transfer function	SP.FTPPUT	Sending FTP client files	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SP.FTPGET	Retrieving FTP client files	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Ethernet module	GP.OPEN	Connection establishment	-	\bigcirc	\bigcirc	\bigcirc
	GP.CLOSE	Connection disconnection	-	\bigcirc	\bigcirc	\bigcirc
	GP.SOCRCV	Read of received data	-	\bigcirc	\bigcirc	\bigcirc
	GP.SOCSND	Data transmission	-	\bigcirc	\bigcirc	\bigcirc

PID control instruction

Classification	Instruction symbol	Function	Compatible CPU module			
			FX5S	FXEUU	FXEU	FX5UC
PID control	PID	PID operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc

SFC program instructions

Classification	Instruction symbol	Function	Compatible CPU module			
			FX5S	FX5US	FXEU	FX5UC
SFC Control Instructions	$\begin{array}{\|l\|} \hline \text { LD[SD/ } \\ \text { BLDTSD] } \\ \hline \end{array}$	Checking the status of a step	-	-	\bigcirc	\bigcirc
	$\begin{array}{\|l} \hline \text { LDIISD/ } \\ \text { BLDISD] } \\ \hline \end{array}$		-	-	\bigcirc	\bigcirc
	$\begin{array}{\|l\|l} \hline \text { AND[SD/ } \\ \text { BLDTSD] } \\ \hline \end{array}$		-	-	\bigcirc	\bigcirc
	$\begin{array}{\|l\|l\|} \hline \text { ANI[SD/ } \\ \text { BLDISD] } \\ \hline \end{array}$		-	-	\bigcirc	\bigcirc
	$\begin{array}{\|l} \hline \text { OR[SD/ } \\ \text { BLDTSD] } \\ \hline \end{array}$		-	-	\bigcirc	\bigcirc
	$\begin{array}{\|l} \hline \text { ORI[SD/ } \\ \text { BLपISD] } \\ \hline \end{array}$		-	-	\bigcirc	\bigcirc
	LD[BLD]	Checking the status of a block	-	-	\bigcirc	\bigcirc
	LD[BLD]		-	-	\bigcirc	\bigcirc
	AND[BLD]		-	-	\bigcirc	\bigcirc
	AN[[BLD]		-	-	\bigcirc	\bigcirc
	OR[BLD]		-	-	\bigcirc	\bigcirc
	ORI[BLD]		-	-	\bigcirc	\bigcirc
	MOV(P) [KnSD/ BLDIKnSD]	Batch-reading the status of steps	-	-	\bigcirc	\bigcirc
	DMOV(P) [KnSD/ BLDKKnS[]		-	-	\bigcirc	\bigcirc
	$\begin{array}{\|l} \hline \mathrm{BMOV}(\mathrm{P}) \\ \text { [KnSD/ } \\ \mathrm{BLDKKSD]} \\ \hline \end{array}$		-	-	\bigcirc	\bigcirc
	SET[BLD]	Starting a block	-	-	\bigcirc	\bigcirc
	RST[BLD]	Ending a block	-	-	\bigcirc	\bigcirc
	$\begin{array}{\|l} \hline \text { SET[SD/ } \\ \text { BLISI] } \\ \hline \end{array}$	Activating a step	-	-	\bigcirc	\bigcirc
	$\begin{array}{\|l\|l} \hline \text { RSTISD/ } \\ \text { BL[IS[] } \end{array}$	Deactivating a step	-	-	\bigcirc	\bigcirc
		Activating/deactivating a step	-	-	\bigcirc	\bigcirc
	$\begin{array}{\|l} \hline \text { ZRST(P)[SD/ } \\ \text { BLDTI]] } \\ \hline \end{array}$	Batch-deactivating a step	-	-	\bigcirc	\bigcirc
SFC Dedicated Instruction	TRAN	Creating a dummy transition condition	-	-	\bigcirc	\bigcirc

List of module dedicated instructions

Classification	Instruction symbol	Function	Compatible CPU module			
			R(5S	FXVU]	FXEU	Pxuc
Network Common	GP.READ	Reading data from the PLC of another station	-	\bigcirc	\bigcirc	\bigcirc
	GP.SREAD	Reading data from the PLC of another station (A read notice is issued.)	-	\bigcirc	-	\bigcirc
	GP.WRITE	Writing data to the PLC of another station	-	\bigcirc	-	\bigcirc
	GP.SWRITE	Writing data to the PLC of another station (A write notice is issued.)	-	\bigcirc	-	\bigcirc
	GP.SEND	Transmission of data to the PLC of another station	-	\bigcirc	\bigcirc	\bigcirc
	GP.RECV	Reception of data from the PLC of another station	-	\bigcirc	\bigcirc	\bigcirc
CC-Link IE TSN	G(P).UINI	Own station number/IP address setting	-	-	\bigcirc	\bigcirc
	G(P). SLMPSND	Sending an SLMP message	-	-	O	\bigcirc
CC-Link IE Field Network	G(P). CCPASET	Setting parameters	-	\bigcirc	\bigcirc	\bigcirc
	G(P).UINI	Setting the station number to own station	-	\bigcirc	\bigcirc	\bigcirc
High-speed counter	DHSCS	32-bit data comparison set	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DHSCR	32-bit comparison reset	\bigcirc	\bigcirc	0	\bigcirc
	DHSZ	32-bit data bandwidth comparison	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	HIOEN(P)	Start and stop of 16 -bit data high-speed input/output function	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DHIOEN(P)	Start and stop of 32 -bit data high-speed input/output function	\bigcirc	\bigcirc	\bigcirc	\bigcirc
High-speed transfer of current value	HCMOV(P)	High-speed transfer of 16 -bit data current value	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DHCMOV(P)	High-speed transfer of 32-bit data current value	\bigcirc	\bigcirc	\bigcirc	\bigcirc
External device communication	RS2	Serial data transfer 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Inverter communication	IVCK	Inverter operation monitor	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	IVDR	Inverter operation control	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	IVRD	Inverter parameter read	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	IWR	Inverter parameter write	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	VBWR	Inverter parameter batch wite	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	INMC	Mutiple commands of inverter	\bigcirc	\bigcirc	\bigcirc	\bigcirc
MODBUS	ADPRW	MODBUS data read/write	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Communication protocol support function	S(P).CPRTCL	Execution of communication protocol registered by engineering tool	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Positioning	DSZR	Home position return with 16-bit data dog search	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DDSZR	Home position return with 32-bit data dog search	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DVIT	16-bit data interrupt positioning	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DDVIT	32-bit data interrupt positioning	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	TBL	Positioning by 1 -table operation	\bigcirc	\bigcirc	0	\bigcirc
	DRVTBL	Positioning by multiple-table operation	\bigcirc	0	\bigcirc	\bigcirc
	DRVMUL	Multiple axis simultaneous drive positioning	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DABS	32-bit data ABS current value read	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	PLSV	16-bit data variable speed pulse	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DPLSV	32-bit data variable speed pulse	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DRVI	16-bit data relative positioning	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DDRVI	32-bit data relative positioning	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DRVA	16-bit data absolute positioning	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	DDRVA	32-bit data absolute positioning	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	G.ABRST1 G.ABRST2	Absolute position restoration of specified axis	-	\bigcirc	\bigcirc	\bigcirc
	GP.PSTRT1 GP.PSTRT2	Starting the positioning of specified axis	-	\bigcirc	\bigcirc	\bigcirc
	GP.TEACH1 GP.TEACH2	Teaching of specified axis	-	\bigcirc	\bigcirc	\bigcirc
	GP.PFWRT	Backing up the module	-	\bigcirc	\bigcirc	\bigcirc
	GP.PINT	Module initialization	-	\bigcirc	\bigcirc	\bigcirc
BFM split read/write	RBFM	BFM split read	-	-	\bigcirc	\bigcirc
	WBFM	BFM split write	-	-	\bigcirc	\bigcirc

Special Devices

Typical special relays and special registers are described below.
For details, refer to manual.

List of special relays

Diagnostic information

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SM0	Latest self diagnosis error (including annunciator ON)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM1	Latest self diagnosis error (not including annunciator ON)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM50	Error reset	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM51	Battery low latch	-	-	\bigcirc	\bigcirc
SM52	Battery low	-	-	\bigcirc	\bigcirc
SM53	AC/DC DOWN	-	\bigcirc	\bigcirc	\bigcirc
SM56	Operation error	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM61	I/O module verify error	-	\bigcirc	\bigcirc	\bigcirc
SM62	Annunciator	\bigcirc	\bigcirc	\bigcirc	\bigcirc

System information

No. Name	FX5S	FX5UU	FX5U	FX5UC	
SM203	STOP contact	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM204	PAUSE contact	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM210	Clock data set request	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM211	Clock data set error	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM213	Clock data read request	\bigcirc	\bigcirc	\bigcirc	\bigcirc

SFC information

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SM320	Presence/absence of SFC program	-	-	\bigcirc	\bigcirc
SM321	Start/stop SFC program	-	-	\bigcirc	\bigcirc
SM322	SFC program startup status	-	-	\bigcirc	\bigcirc
SM323	Presence/absence of continuous transition for entire block	-	-	\bigcirc	\bigcirc
SM324	Continuous transition prevention flag	-	-	\bigcirc	\bigcirc
SM325	Output mode at block stop	-	-	\bigcirc	\bigcirc
SM327	Output mode at execution of the END step	-	-	\bigcirc	\bigcirc
SM328	Clear processing mode when the sequence reaches the END step	-	-	\bigcirc	\bigcirc
SM4301	FX3 compatible transition operation mode setting status	-	-	\bigcirc	\bigcirc

System clock

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SM400	Always ON	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM401	Always OFF	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM402	After RUN, ON for one scan only	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM403	After RUN, OFF for one scan only	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM409	0.01 sec. clock	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM410	0.1 sec. clock	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM411	0.2 sec. clock	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM412	1 sec. clock	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM413	2 sec. clock	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM414	2n sec. clock	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM415	2n millisecond clock	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Scan information

Instruction related

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SM699	Dedicated instruction skip flag	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM700	Carry flag	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM701	Output character count switching	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM703	Sort order	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM704	Block comparison	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM709	DT/TM instruction improper data detection	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM753	File being accessed	\bigcirc	\bigcirc	\bigcirc	\bigcirc

For serial communication

No.	Name	FX5S	FX5UJ	FX5U	FX5UC
SM8500	Serial communication error (ch1)	-	-	\bigcirc	\bigcirc
SM8560	Data transfer delayed (ch1)	-	-	\bigcirc	\bigcirc
SM8561	Data transfer flag (ch1)	-	-	\bigcirc	\bigcirc
SM8562	Receive completion flag (ch1)	-	-	\bigcirc	\bigcirc
SM8563	Carrier detection flag (ch1)	-	-	\bigcirc	\bigcirc
SM8564	Data set ready flag (ch1)	-	-	\bigcirc	\bigcirc
SM8565	Time-out check flag (ch1)	-	-	\bigcirc	\bigcirc
SM8740	Station No. setting SD latch enabled (ch1)	-	-	\bigcirc	\bigcirc
SM8800	MODBUS RTU communication (ch1)	-	-	\bigcirc	\bigcirc
SM8801	Retry (ch1)	-	-	\bigcirc	\bigcirc
SM8802	Timeout (ch1)	-	-	\bigcirc	\bigcirc
SM8861	Host station No. setting SD latch enabled (ch1)	-	-	\bigcirc	\bigcirc
SM8920	Inverter communication (ch1)	-	-	\bigcirc	\bigcirc
SM8921	IVBWR instruction error (ch1)	-	-	\bigcirc	\bigcirc
SM9040	Data communication error (Master station)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM9041	Data communication error (Slave station No.1)	\bigcirc	\bigcirc	\bigcirc	\bigcirc

FX compatible area

No.	Name	FX5S	FX5UJ	FX5U	FX5UC
SM8000	RUN monitor NO contact	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8001	RUN monitor NC contact	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8002	Initial pulse NO contact	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8003	Initial pulse NC contact	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8004	Error occurrence	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8005	Battery voltage low	-	-	\bigcirc	\bigcirc
SM8006	Battery error latch	-	-	\bigcirc	\bigcirc
SM8007	Momentary power failure	-	\bigcirc	\bigcirc	\bigcirc
SM8008	Power failure detected	-	\bigcirc	\bigcirc	\bigcirc
SM8011	10 msec clock pulse	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8012	100 msec clock pulse	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8013	1 sec clock pulse	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8014	1 min clock pulse	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8015	Clock stop and preset	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8016	Time read display is stopped	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8017	± 30 seconds correction	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8019	Real time clock error	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8020	Zero	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8021	Borrow	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8022	Carry	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8023	Real time clock access error	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8026	Operation stop mode with one ramp output instruction	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8029	Completion of instruction execution	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8031	Non-latch memory all clear	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8032	Latch memory all clear	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8033	Memory hold function when RUN - STOP	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8034	All outputs prohibited	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8039	Constant scan mode	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8040	For STL: Transition prohibited	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8041	For STL: Start of operation during automatic operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8042	For STL: Start pulse	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8043	For STL: Completion of home position return	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8044	For STL: Home position condition	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8045	For STL: All output reset prohibited during mode switch	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8046	For STL: With STL state ON	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8047	For STL: STL monitor (SD8040 to SD8047) enabled	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8048	Annunciator operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8049	ON annunciator minimum number enabled	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8063	Serial communication error1 (ch1)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8067	Operation error	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SM8068	Operation error latch	\bigcirc	\bigcirc	\bigcirc	\bigcirc
O: Supported, -: Not supported					

List of special registers

Diagnostic information

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SD0	Latest self diagnosis error code	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD1	Clock time for self diagnosis error occurrence (Year)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD2	Clock time for self diagnosis error occurrence (Month)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD3	Clock time for self diagnosis error occurrence (Day)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD4	Clock time for self diagnosis error occurrence (Hour)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD5	llock time for self diagnosis error occurrence (Minute)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD6	Clock time for self diagnosis error occurrence (Second)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD7	Clock time for self diagnosis error occurrence (Day Week)	\bigcirc	\bigcirc	\bigcirc	\bigcirc

System information

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SD203	CPU Status	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD210	Clock Data (Year)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD211	Clock Data (Month)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD212	Clock Data (Day)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD213	Clock Data (Hour)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD214	Clock Data (Minute)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD215	Clock Data (Second)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD216	Clock Data (Day Week)	\bigcirc	\bigcirc	\bigcirc	\bigcirc

System clock

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SD412	One second counter	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD414	2n second clock setting	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD415	2n ms second clock setting	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD420	Scan counter	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Scan information

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SD518	Initial scan time (ms)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD519	Initial scan time $(\mu \mathrm{s})$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD520	Current scan time (ms)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD521	Current scan time $(\mu \mathrm{s})$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD522	Minimum scan time (ms)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD523	Minimum scan time $(\mu \mathrm{s})$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD524	Maximum scan time (ms)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD525	Maximum scan time $(\mu \mathrm{s})$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD526	END processing time (ms)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD527	END processing time $(\mu \mathrm{s})$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD528	Constant scan waiting time (ms)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD529	Constant scan waiting time $(\mu \mathrm{s})$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD530	Scan program execution time (ms)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD531	Scan program execution time $(\mu \mathrm{s})$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

For serial communication

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SD8500	Serial communication error code (ch1)	-	-	0	0
SD8501	Serial communication error details (ch1)	-	-	0	0
SD8502	Serial communication setting (ch1)	-	-	0	0
SD8503	Serial communication operational mode (ch1)	-	-	0	0

For built-in Ethernet

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SD10050	Local node IP address [low-order]	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10051	Local node IP address [high-order]	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10060	Subnet mask [low-order]	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10061	Subnet mask [high-order]	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10064	Default gateway IP address [low-order]	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10065	Default gateway IP address [high-order]	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10074	Local node MAC address	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10075	Local node MAC address	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10076	Local node MAC address	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10082	Communication speed setting	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10084	MELSOFT connection TCP port No.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD10086	MELSOFT direct connection port No.	\bigcirc	\bigcirc	\bigcirc	\bigcirc

\diamond FX compatible area

No.	Name	FX5S	FX5UU	FX5U	FX5UC
SD8000	Watch dog timer	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8001	PLC type and system version	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8005	Battery voltage	-	-	\bigcirc	\bigcirc
SD8006	Low battery voltage	-	-	\bigcirc	\bigcirc
SD8007	Power failure count	-	\bigcirc	\bigcirc	\bigcirc
SD8008	Power failure detection period	-	\bigcirc	\bigcirc	\bigcirc
SD8010	Current scan time	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8011	Minimum scan time	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8012	Maximum scan time	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8013	RTC: Seconds	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8014	RTC: Minute data	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8015	RTC: Hour data	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8016	RTC: Day data	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8017	RTC: Month data	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8018	RTC: Year data	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8019	RTC: Day of week data	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8039	Constant scan duration	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8040	ON state number 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8041	ON state number 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8042	ON state number 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8043	ON state number 4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8044	ON state number 5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8045	ON state number 6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8046	ON state number 7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8047	ON state number 8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8049	Lowest active Annunciator	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8063	Serial communication error code (ch1)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SD8067	Operation error	\bigcirc	\bigcirc	\bigcirc	\bigcirc

General, Power Supply, Input/ Output Specifications

General specifications

Item	Specifications				
	FX5S/FX5UJ			FX5U/FX5UC	
Operating ambient temperature*1	0 to $55^{\circ} \mathrm{C}\left(32\right.$ to $\left.131^{\circ} \mathrm{F}\right)$, non-freezing			-20 to $55^{\circ} \mathrm{C}\left(-4\right.$ to $\left.131^{\circ} \mathrm{F}\right)$, non-freezing ${ }^{* 2 * 3 * 4}$	
Storage ambient temperature	-25 to $75^{\circ} \mathrm{C}\left(-13\right.$ to $167^{\circ} \mathrm{F}$), non-freezing				
Operating ambient humidity	5 to 95\%RH, non-condensation*5				
Storage ambient humidity	5 to 95\%RH, non-condensation				
Vibration resistance ${ }^{* 6 * 7}$		Frequency	Acceleration	Half amplitude	Sweep count
	Installed on DIN rail	5 to 8.4 Hz	-	1.75 mm	10 times each in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions (80 min in each direction)
		8.4 to 150 Hz	$4.9 \mathrm{~m} / \mathrm{s}^{2}$	-	
	Direct installing*8	5 to 8.4 Hz	-	3.5 mm	
		8.4 to 150 Hz	$9.8 \mathrm{~m} / \mathrm{s}^{2}$	-	
Shock resistance*6	$147 \mathrm{~m} / \mathrm{s}^{2}$, Action time: $11 \mathrm{~ms}, 3$ times by half-sine pulse in each direction X, Y, and Z				
Noise durability*9	By noise simulator at noise voltage of 1000 Vp -p, noise width of 1 ms and period of 30 to 100 Hz				
Grounding	Class D grounding (grounding resistance: 100Ω or less) <Common grounding with a heavy electrical system is not allowed.>*10				
Working atmosphere	Free from corrosive or flammable gas and excessive conductive dust				
Operating altitude**1	0 to 2000 m				
Installation location	Inside a control panel*12				
Overvoltage category* ${ }^{* 13}$	Il or less				
Pollution degree*14	2 or less				

*1 : The simultaneous ON ratio of available PLC inputs or outputs changes with respect to the ambient temperature. For details, refer to the manual.
*2 : 0 to $55^{\circ} \mathrm{C}$ for products manufactured before June 2016. For intelligent function modules, refer to the manual of each product.
The following products cannot be used when the ambient temperature is less than $0^{\circ} \mathrm{C}$
FX5-40SSC-S, FX5-80SSC-S, FX5-CNV-BUS, FX5-CNV-BUSC, battery (FX3U-32BL), SD memory cards (NZ1MEM-2GBSD, NZ1MEM-4GBSD, NZ1MEM-8GBSD, NZ1MEM-16GBSD, L1MEM-2GBSD and L1MEM-4GBSD), FX3 extension modules, terminal blocks and I/O cables (FX-16E-500CAB-S, FX-16E- $\square \mathrm{CAB}$ and FX-16E- $\square \mathrm{CAB}$-R) : The specifications are different in the use at less than $0^{\circ} \mathrm{C}$. For details, refer to the manual.
*4 : When using the FX5-CCLGN-MS manufactured in December 2020 or earlier, the operating ambient temperature is -20 to $50^{\circ} \mathrm{C}$.
*5 : When used in a low-temperature environment, use in an environment with no sudden temperature changes. If there are sudden temperature changes because of opening/ closing of the control panel or other reasons, condensation may occur, which may cause a fire, fault, or malfunction. Furthermore, use an air conditioner in dehumidifier mode to prevent condensation.
*6 : The criterion is shown in IEC61131-2.
*7 When the system has equipment which specification values are lower than above mentioned vibration resistance specification values, the vibration resistance specification of the whole system is corresponding to the lower specification
*8 : Direct installation of FX5UC is not possible.
*9 : When using the FX5 safety extension modules under the severe noise environment, implement external noise countermeasures with a surge absorber and ferrite core.

* 10: For grounding, refer to manuals of each product
*11: The PLC cannot be used at a pressure higher than the atmospheric pressure to avoid damage
* 12: The programmable controller is assumed to be installed in an environment equivalent to indoor
$* 13$: This indicates the section of the power supply to which the equipment is assumed to be connected between the public electrical power distribution network and the machinery within premises. Category II applies to equipment for which electrical power is supplied from fixed facilities. The surge voltage withstand level for up to the rated voltage of 300 V is 2500 V .
* 14: This index indicates the degree to which conductive material is generated in the environment in which the equipment is used. Pollution level 2 is when only non-conductive pollution occurs. Temporary conductivity caused by condensation must be expected occasionally.

Power supply specifications

- Power supply specifications (FX5S CPU module)

Item		Specifications		
		FX5S-30M■	FX5S-40M■	FX5S-60M■
Rated voltage		100 to 240 V AC		
Voltage fluctuation range		-15\%, +10\%		
Frequency rating		$50 / 60 \mathrm{~Hz}$		
Allowable instantaneous power failure time		Operation can be continued upon occurrence of instantaneous power failure for 10 ms or less.		
Power fuse		$250 \mathrm{~V}, 3.15$ A Time-lag fuse		
Rush current		Max. 30 A 5 ms or less/ 100 V AC Max. 50 A 5 ms or less/200 V AC		
Power consumption*1		28 W	30 W	33 W
24 V DC service power supply capacity*2	Supply capacity when 24 V DC service power supply is used for input circuit of the CPU module	400 mA		
	Supply capacity when external power supply is used for input circuit of the CPU module			

- Power supply specifications (FX5UJ CPU module)

liem		Specifications		
		FX5UJ-24M■	FX5UJ-40M■	FX5UJ-60M
Rated voltage		100 to 240 V AC		
Voltage fluctuation range		-15\%, +10\%		
Frequency rating		$50 / 60 \mathrm{~Hz}$		
Allowable instantaneous power failure time* ${ }^{* 1}$		Operation can be continued upon occurrence of instantaneous power failure for 10 ms or less. When the supply voltage is 200 V AC or higher, the time can be change to 10 to 100 ms by editing the user program.		
Power fuse		$250 \mathrm{~V}, 3.15 \mathrm{~A}$ Time-lag fuse		
Rush current		25 A max. 5 ms or less/100 V AC 50 A max. 5 ms or less/200 V AC	30 A max. 5 ms or less/100 V AC 50 A max. 5 ms or less/200 V AC	
Power consumption*2		30 W	32 W	35 W
24 V DC service	Supply capacity when 24 V DC service power supply is used for input circuit of the CPU module	400 mA	400 mA	400 mA
power supply capacity***4	Supply capacity when external power supply is used for input circuit of the CPU module	460 mA	500 mA	550 mA

$*$ 1: The allowable instantaneous power failure time does not apply to the FX5 safety extension module.
$* 2$: This item shows value when all 24 V DC service power supplies are used in the maximum configuration connectable to the CPU module. (The current of the input circuit is included.)
*3: When I/O modules are connected, they consume current from the 24 V DC service power supply.
For details about the service power supply, refer to the manual.
*4: The FX5 safety extension module cannot use a 24 V DC service power supply.

- Power supply specifications (FX5U CPU module, AC power supply type)

Item		Specifications		
		FX5U-32M■/E■	FX5U-64M■/E■	FX5U-80M■/E■
Rated voltage		100 to 240 V AC		
Voltage fluctuation range		-15\%, +10\%		
Frequency rating		$50 / 60 \mathrm{~Hz}$		
Allowable instantaneous power failure time		Operation can be continued upon occurrence of instantaneous power failure for 10 ms or less. If the supply voltage is 200 VAC system, change in the range from 10 to 100 ms can be made by the user program.		
Power fuse		250 V 3.15 A Time-lag Fuse	250 V 5 A Time-lag Fuse	
Rush current		25 A max. 5 ms or less/ 100 V AC 50 A max. 5 ms or less/200 V AC	30 A max. 5 ms or less/100 V AC 60 A max. 5 ms or less/200 V AC	
Power consumption*1		30 W	40 W	45 W
5 V DC internal power supply capacity		900 mA	1100 mA	1100 mA
24 V DC service power supply capacity*2	Supply capacity when 24 V DC service power supply is used for input circuit of the CPU module*3	$400 \mathrm{~mA}(300 \mathrm{~mA})$	$600 \mathrm{~mA}(300 \mathrm{~mA})$	$600 \mathrm{~mA}(300 \mathrm{~mA})$
	Supply capacity when external power supply is used for input circuit of the CPU module*3	$480 \mathrm{~mA}(380 \mathrm{~mA})$	$740 \mathrm{~mA}(440 \mathrm{~mA})$	$770 \mathrm{~mA}(470 \mathrm{~mA})$

*1: The values show the state where the service power of 24 VDC is consumed to the maximum level in case that its configuration has the max. no. of connections provided to CPU module. (Including the current in an input circuit)
*2: When I/O modules are connected, they consume current from the 24 V DC service power supply, resulting in decrease of usable current. For details about the service power supply, refer to the manual.
*3: The value in () is capacity of 24 V DC service power supply in the case where operating ambient temperature is lower than $0^{\circ} \mathrm{C}$.

- Power supply specifications (FX5U CPU module, DC power supply type)

Item	Specifications		
	FX5U-32Mロ/D	FX5U-64M■/D \square	FX5U-80M■/D \square
Rated voltage	24 V DC		
Voltage fluctuation range	-30\%, +20\%		
Allowable instantaneous power failure time	Operation can be continued upon occurrence of instantaneous power failure for 5 ms or less.		
Power fuse	250 V 3.15 A Time-lag Fuse	250 V 5 A Time-lag Fuse	
Rush current	$50 \mathrm{~A} \mathrm{max}$.0.5 ms or less/24 V DC	65 A max. 2.0 ms or less/24 V DC	
Power consumption*1	30 W	40 W	45 W
5 V DC internal power supply capacity*2	$900 \mathrm{~mA}(775 \mathrm{~mA})$	$1100 \mathrm{~mA}(975 \mathrm{~mA})^{* 2}$	$1100 \mathrm{~mA}(975 \mathrm{~mA})^{* 2}$
24 V DC internal power supply capacity*2	480 mA (360 mA)	$740 \mathrm{~mA}(530 \mathrm{~mA})^{* 2}$	$770 \mathrm{~mA}(560 \mathrm{~mA})^{* 2}$

1: The values show the state where power is consumed to the maximum level in case that the configuration has the max. no. of connections provided to CPU module. $ 2$: The values in the parentheses () indicate the power supply capacity to be resulted when the power supply voltage falls in the range from 16.8 to 19.2 V DC.

- Power supply specifications (FX5UC CPU module)

Item	Specifications		
	FX5UC-32M■/■	FX5UC-64MT/ \square	FX5UC-96MT/ \square
Rated voltage	24 V DC		
Voltage fluctuation range	+20\%, -15\%		
Allowable instantaneous power failure time	Operation can be continued upon occurrence of instantaneous power failure for 5 ms or less.		
Power fuse	125 V 3.15 A Time-lag Fuse		
Rush current	$35 \mathrm{~A} \mathrm{max}$.0.5 ms or less/24 V DC	40 A max. 0.5 ms or less/24 V DC	
Power consumption*	$5 \mathrm{~W} / 24 \mathrm{~V}$ DC (30 W/24 V DC +20\%, -15\%)	$8 \mathrm{~W} / 24 \mathrm{~V}$ DC (33 W/24 V DC +20\%, -15\%)	$11 \mathrm{~W} / 24 \mathrm{~V}$ DC (36 W/24 V DC +20\%, -15\%)
5 V DC internal power supply capacity	720 mA		
24 V DC internal power supply capacity	500 mA		

*: The value results when the CPU module is used alone.
The values in the parentheses () result when the maximum no. of connections have been made to the CPU module. (External DC 24 V power supplies of extension modules are not included.)

- Power supply specifications (FX5-4A-ADP)

Item	Specifications
External electric supply (Analog conversion circuit)	$24 \mathrm{VDC}+20 \%,-15 \% 100 \mathrm{~mA}$ External electric supply is carried out from the power supply connector of an adapter.
Internal electric supply (Interface)	5V DC 10 mA Internal electric supply is carried out from 5 5 DC power supply of a CPU module.

- Power supply specifications (FX5-4DA-ADP)

Item	Specifications
External power feed (D/A conversion circuit)	$24 \mathrm{~V} \mathrm{DC}+20 \%,-15 \% ~ 160 \mathrm{~mA}$ Power is externally fed from the power supply connector of the adapter.
Internal power feed (interface)	5 VDC 10 mA Power is internally fed from the 5 V DC power supply of the CPU module.

- Power supply specifications (FX5-4AD-ADP)

Item	Specifications
Internal power feed (ADD conversion circuit)	24 V DC 20 mA Power is internally fed from the 24 V DC power supply of the CPU module.
Internal power feed (interface)	5 V DC 10 mA Power is internally fed from the 5 V DC power supply of the CPU module.

- Power Supply Specifications (FX5-4AD-PT-ADP)

Item	Specifications
Internal power feed (A/D conversion circuit)	24 V DC 20 mA Power is internally fed from 24 V DC power supply of the CPU module.
Internal power feed (interface)	5 V DC 10 mA Power is internally fed from 5 V DC power supply of the CPU module.

- Power Supply Specifications (FX5-4AD-TC-ADP)

Item	Specifications
Internal power feed (A/D conversion circuit)	24 VDC 20 mA Power is internally fed from 24 V DC power supply of the CPU module.
Internal power feed (interface)	5V DC 10 mA Power is internally fed from 5 V DC power supply of the CPU module.

\diamond Input specifications

- Input specifications (FX5S CPU module)

Item		Specifications		
		FX5S-30M■	FX5S-40M■	FX5S-60M■
Number of input points		16 points	24 points	36 points
Connection type		Non-removable terminal block (M3 screws)		
Input type		Sink/source		
Input signal voltage		24 V DC +20\%, -15\%		
Input signal current	X0 to X7	$5.1 \mathrm{~mA} / 24 \mathrm{~V}$ DC		
	X10 and subsequent	$4.0 \mathrm{~mA} / 24 \mathrm{~V}$ DC		
Input impedance	X0 to X7	$4.3 \mathrm{k} \Omega$		
	X10 and subsequent	$5.6 \mathrm{k} \Omega$		
ON input sensitivity current	X0 to X7	3.5 mA or more		
	X10 and subsequent	3.0 mA or more		
OFF input sensitivity current		1.5 mA or less		
Input response frequency	X0, X1, X3, X4	100 kHz When capturing pulses of a response frequency of 50 to 100 kHz , refer to the manual.		
	X2, X5, X6, X7	10 kHz		
Pulse waveform	Waveform	 T1 (pulse width)		
	X0, X1, X3, X4	$5 \mu \mathrm{~s}$ or more		
	X2, X5, X6, X7	50μ s or more		
	Waveform	 T2 (rise/fall time)		
	X0, X1, X3, X4	2.5μ s or less		
	X2, X5, X6, X7	25μ s or less		
Input response time (H/W filter delay)	X0, X1, X3, X4	ON: 5μ s or less OFF: $5 \mu \mathrm{~s}$ or less		
	X2, X5, X6, X7	ON: $30 \mu \mathrm{~s}$ or less OFF: $50 \mu \mathrm{~s}$ or less		
	X10 to X17	ON: $50 \mu \mathrm{~s}$ or less OFF: $150 \mu \mathrm{~s}$ or less		
	X20 and subsequent	ON: Approx. 10 ms OFF: Approx. 10 ms		
Input response time (Digital filter setting value)	X0 to X17	None, $10 \mu \mathrm{~s}, 50 \mu \mathrm{~s}, 0.1 \mathrm{~ms}, 0.2 \mathrm{~ms}, 0.4 \mathrm{~ms}, 0.6 \mathrm{~ms}, 1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$ (initial values), $20 \mathrm{~ms}, 70 \mathrm{~ms}$ When using this product in an environment with much noise, set the digital filter.		
Input signal format		No-voltage contact input Sink: NPN open collector transistor Source: PNP open collector transistor		
Input circuit insulation		Photocoupler		
Indication of input operation		LED is lit when input is on		
Input circuit configuration	AC power supply type	- When the 24 V DC service power supply is used Sink input wiring Source input wiring		
		- When an external pow Sink inpu	is used	

- Input specifications (FX5UJ CPU module)

Item		Specifications		
		FX5UJ-24M■	FX5UJ-40Mロ	FX5UJ-60M■
No. of input points		14 points (16 points)*	24 points	36 points (40 points)*
Connection type		Removable terminal block (M3 screws)		
Input type		Sink/source		
Input signal voltage		24 V DC + 20 \%, -15\%		
Input signal current	X0 to X7	$5.3 \mathrm{~mA} / 24 \mathrm{~V} \mathrm{DC}$		
	X10 and subsequent	$4.0 \mathrm{~mA} / 24 \mathrm{~V}$ DC		
Input impedance	X0 to X7	$4.3 \mathrm{k} \Omega$		
	X10 and subsequent	$5.6 \mathrm{k} \Omega$		
ON input sensitivity current	X0 to X7	3.5 mA or more		
	X10 and subsequent	3.0 mA or more		
OFF input sensitivity current		1.5 mA or less		
Input response frequency	X0, X1, X3, X4	100 kHz When capturing pulses of a response frequency of 50 to 100 kHz , refer to the manual.		
	X2, X5, X6, X7	10 kHz		
Pulse waveform	Waveform	 T1 (pulse width)		
	X0, X1, X3, X4	$5 \mu \mathrm{~s}$ or more		
	X2, X5, X6, X7	50μ s or more		
	Waveform	 T2 (rise/fall time)		
	X0, X1, X3, X4	2.5μ s or less		
	X2, X5, X6, X7	25μ s or less		
Input response time (H/W filter delay)	X0, X1, X3, X4	ON: $5 \mu \mathrm{~s}$ or less OFF: $5 \mu \mathrm{~s}$ or less		
	X2, X5, X6, X7	ON: $30 \mu \mathrm{~s}$ or less OFF: $50 \mu \mathrm{~s}$ or less		
	X10 to X17	ON: 50μ s or less OFF: $150 \mu \mathrm{~s}$ or less		
	X20 and subsequent	ON: Approx. 10 ms OFF: Approx. 10 ms		
Input response time (Digital filter setting value)	X0 to X17	None, $10 \mu \mathrm{~s}, 50 \mu \mathrm{~s}, 0.1 \mathrm{~ms}, 0.2 \mathrm{~ms}, 0.4 \mathrm{~ms}, 0.6 \mathrm{~ms}, 1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$ (initial values), $20 \mathrm{~ms}, 70 \mathrm{~ms}$ When using this product in an environment with much noise, set the digital filter.		
Input signal format		No-voltage contact input Sink: NPN open collector transistor Source: PNP open collector transistor		
Input circuit insulation		Photocoupler		
Indication of input operation		LED is lit when input is on		
Input circuit configuration	AC power supply type	- When using 24 V DC service power supply Sink input wiring Source input wiring		

[^67]General, Power Supply, Input/Output Specifications

- Input specifications (FX5U CPU module)

Item		Specifications		
		FX5U-32M■	FX5U-64Mロ	FX5U-80M■
No. of input points		16 points	32 points	40 points
Connection type		Removable terminal block (M3 screws)		
Input type		Sink/source		
Input signal voltage		24 V DC +20\%, -15\%		
Input signal current	X0 to X17	$5.3 \mathrm{~mA} / 24 \mathrm{~V}$ DC		
	X20 and subsequent	$4.0 \mathrm{~mA} / 24 \mathrm{~V}$ DC		
Input impedance	X0 to X17	$4.3 \mathrm{k} \Omega$		
	X20 and subsequent	$5.6 \mathrm{k} \Omega$		
ON input sensitive current	X0 to X17	3.5 mA or more		
	X20 and subsequent	3.0 mA or more		
OFF input sensitivity current		1.5 mA or less		
Input response frequency	X0 to X5	200 kHz	-	
	X0 to X7	-	200 kHz	
	X6 to X17	10 kHz	-	
	X10 to X17	-	10 kHz	
Pulse waveform	Waveform		 T2 (rise/fall time)	
	X0 to X5	T1: 2.5 us or more, T2: $1.25 \mu \mathrm{~s}$ or less	-	
	X0 to X7	-	T1: 2.5 ¢ or more, T 2 : $1.25 \mu \mathrm{~s}$ or less	
	X6 to X17	T1: $50 \mu \mathrm{~s}$ or more, T2: $25 \mu \mathrm{~s}$ or less	-	
	X10 to X17	-	T1: 50μ s or more, T2: 25μ s or less	
Input response time (H/W filter delay)	X0 to X5	ON: $2.5 \mu \mathrm{~s}$ or less, OFF: $2.5 \mu \mathrm{~s}$ or less	-	
	X0 to X7	-	ON: $2.5 \mu \mathrm{~s}$ or less, OFF: 2.5μ s or less	
	X6 to X17	ON: $30 \mu \mathrm{~s}$ or less, OFF: $50 \mu \mathrm{~s}$ or less	-	
	X10 to X17	-	ON: 30μ s or less, OFF: 50μ s or less	
	X20 and subsequent	-	ON: $50 \mu \mathrm{~s}$ or less, OFF: $150 \mu \mathrm{~s}$ or less	
Input response time (Digital filter setting value)		None, $10 \mu \mathrm{~s}, 50 \mu \mathrm{~s}, 0.1 \mathrm{~ms}, 0.2 \mathrm{~ms}, 0.4 \mathrm{~ms}, 0.6 \mathrm{~ms}, 1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$ (initial values), $20 \mathrm{~ms}, 70 \mathrm{~ms}$ When using this product in an environment with much noise, set the digital filter.		
Input signal format		No-voltage contact input Sink: NPN open collector transistor Source: PNP open collector transistor		
Input circuit insulation		Photocoupler		
Indication of input operation		LED is lit when input is on		
Input circuit configuration	AC power supply type	Sink input wiring		wiring
		- When using external po Sink input		
	DC power supply type	Sink input wiring Source input wiring		

－Input specifications（FX5UC CPU module）

Item		Specifications		
		FX5UC－32M \square / \square	FX5UC－64MT／\square	FX5UC－96MT／\square
No．of input points		16 points	32 points	48 points
Connection type		Connector（FX5UC－पMT／D（SS）） Spring clamp terminal block（FX5UC－32Mロ／ロ－TS）		
Input type		Sink（FX5UC－■MT／D） Sink／source（FX5UC－■MT／DSS，FX5UC－32MT／DS（S）－TS）		
Input signal voltage		24 V DC＋20\％，－15\％		
Input signal current	X0 to X17	$5.3 \mathrm{~mA} / 24 \mathrm{~V}$ DC		
	X20 and subsequent	$4.0 \mathrm{~mA} / 24 \mathrm{~V}$ DC		
Input impedance	X0 to X17	$4.3 \mathrm{k} \Omega$		
	X20 and subsequent	$5.6 \mathrm{k} \Omega$		
ON input sensitivity current	X0 to X17	3.5 mA or more		
	X20 and subsequent	3.0 mA or more		
OFF input sensitivity current		1.5 mA or less		
Input response frequency	X0 to X5	200 kHz	－	
	X0 to X7	－	200 kHz	
	X6 to X17	10 kHz	－	
	X10 to X17	－	10 kHz	
Pulse waveform	Waveform	 T1（pulse width）	T2（rise／fall time）	
	X0 to X5	T1： 2.5 μ s or more， T2： $1.25 \mu \mathrm{~s}$ or less	－	
	X0 to X7	－	T1： $2.5 \mu \mathrm{~s}$ or more， $\mathrm{T} 2: 1.25 \mu \mathrm{~s}$ or less	
	X6 to X17	T1： $50 \mu \mathrm{~s}$ or more， T2： $25 \mu \mathrm{~s}$ or less	－	
	X10 to X17		T1： $50 \mu \mathrm{~s}$ or more， $\mathrm{T} 2: 25 \mu \mathrm{~s}$ or less	
Input response time （H／W filter delay）	X0 to X5	ON： $2.5 \mu \mathrm{~s}$ or less， OFF： $2.5 \mu \mathrm{~s}$ or less	－	
	X0 to X7	－	ON： 2.5μ s or less，OFF： 2.5μ s or less	
	X6 to X17	ON： $30 \mu \mathrm{~s}$ or less， OFF： 50μ s or less	－	
	X10 to X17	－	ON： $30 \mu \mathrm{~s}$ or less，OFF： $50 \mu \mathrm{~s}$ or less	
	X20 and subsequent	－	ON： 50μ s or less，OFF： 150μ or less	
Input response time（Digital filter setting value）		None， $10 \mu \mathrm{~s}, 50 \mu \mathrm{~s}, 0.1 \mathrm{~ms}, 0.2 \mathrm{~ms}, 0.4 \mathrm{~ms}, 0.6 \mathrm{~ms}, 1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$（initial values）， $20 \mathrm{~ms}, 70 \mathrm{~ms}$ When using this product in an environment with much noise，set the digital filter．		
Input signal format （Input sensor form）		FX5UC－■MT／D No－voltage contact input NPN open collector transistor		
		FX5UC－■MT／DSS，FX5UC－32MD／ロ－TS No－voltage contact input Sink：NPN open collector transistor Source：PNP open collector transistor		
Input circuit insulation		Photocoupler		
Indication of input operation		LED is lit when input is on（DISP switch：IN）		
Input circuit configuration		FX5UC－■MT／D Sink input wiring		
		FX5UC－［MT／DSS， FX5UC－32MD／D－TS		

＊：Spring clamp terminal block type：The［COMO］terminal is the［S／S］terminal．

General, Power Supply, Input/Output Specifications

- Safety inputs specifications (safety main module)

Item		Specifications
		FX5-SF-MU4T5*7
Connection type		Spring clamp terminal block
Number of inputs		4 points
Input voltage (ON)		13 V DC or more (13 V DC to 30 V DC)
Input voltage (OFF)		5 V DC or less (-5 V DC to 5 V DC)
Input current (ON)		$3 \mathrm{~mA}(2.4 \mathrm{~mA}$ to 3.8 mA$)$
Input current (OFF)		2.1 mA or less (-2.5 mA to 2.1 mA)
Input response time (filter delay)		2 ms
Indication of input operation		LED lights when an input is ON.
Minimum switch-off time ${ }^{* 1 * 2}$ (10/11)	Program 1, 2, 4, 5, 6, and 9	24 ms
	Program 3.1, 7, and 8	4 ms
	Program 3.2	$76 \mathrm{~ms} / 24 \mathrm{~ms}$
Minimum switch-off time ${ }^{* 1 * 2}$(12/13)	Program 4, 5, and 6	24 ms
	Program 1, 2, 3, 7, 8, and 9	4 ms
Power-up time		70 ms
Synchronous time monitoring	Program 1 and 2	1500 ms
	Program 4 and 5	500 ms
Muting ON*3	Program 3	61 ms
Muting OFF	Program 3	$61 \mathrm{~ms} \mathrm{(165} \mathrm{~ms}{ }^{* 4}$)
Muting gap suppression*5	Program 3	94 ms to 100 ms
Reset time		106 ms
Maximum teach-in time of the ENTER button*6		3 s
Duration of actuation of a reset button (X0 and X1)		50 ms to 5 s
Number of occupied input/output points		8 points (Either input or output is available for

*1: The minimum switch-off time is the minimum time takes until a switch-off condition is detected after a module is switched off.
*2: A response time without any sensors. When sensors are connected, the data of the connected sensors is applied and the minimum switch-off time is extended
*3: The time from when a muting condition is enabled ($12 / 13$ are turned ON) until a muting function is activated.

* 4: Indicates the maximum switch-off time when a muting error occurs.
*5: A muting input (12 or I3) keeps OFF for the specified period of time.
*6: A time from when an ERROR LED starts flashing.
* 7 : For details regarding the general inputs, refer to the manual.
- Safety inputs specifications (safety input expansion module)

Item		Specifications
		FX5-SF-8D14
Connection type		Spring clamp terminal block
Number of inputs		8 points
Input voltage (ON)		13 V DC or more (13 V DC to 30 V DC)
Input voltage (OFF)		5 V DC or less (-5 V DC to 5 V DC)
Input current (ON)		$3 \mathrm{~mA}(2.4 \mathrm{~mA}$ to 3.8 mA$)$
Input current (OFF)		2.1 mA or less (-2.5 mA to 2.1 mA)
Indication of input operation		LED lights when an input is ON.
Minimum switch-off time	Program 1, 2, 3, 4, 5, and 8	24 ms
	Program 6 and 7	4 ms
Synchronous time monitoring	Program 3 and 5	1500 ms
Power-up time		70 ms
Number of occupied input/output points		0 points (no occupied points)

General，Power Supply，Input／Output Specifications

－Input specifications（Extension module（extension connector type），input，input／output module）

liem	Specifications						
	FX5－C16EXD	FX5－C32EXD	FX5－C32ET／D	FX5－C16EXDS	FX5－C32EXDS	FX5－C32ET／DSS	FX5－C32EXDS－TS， FX5－C32ET／DS（S）－TS
Connection type	Connector						Spring clamp terminal block
Input type	Sink			Sink／source			
Input signal voltage	24 V DC $+20 \%$ ，-15%						
Input signal current	$4.0 \mathrm{~mA} / 24 \mathrm{~V} \mathrm{DC}$						
Input impedance	$5.6 \mathrm{k} \Omega$						
Input sensitivity	3.0 mA or more						
sensitivity current OFF	1.5 mA or less						
Input response time	ON： $50 \mu \mathrm{~s}$ or less OFF： 150μ s or less						
Input signal format	No－voltage contact input Sink：NPN open collector transistor			No－voltage contact input Sink：NPN open collector transistor Source：PNP open collector transistor			
Input circuit insulation	Photocoupler						
Indication of input operation	LED is lit when input is on	LED is lit when input is on（F／L of DISP switch is used to change between lower and higher numbers．）	LED is lit when input is on （DISP switch：IN）	LED is lit when input is on	LED is lit when input is on（F／L of DISP switch is used to change between lower and higher numbers．）	LED is lit when input is on （DISP switch：IN）	LED is lit when input is on
Input circuit configuration			$\begin{aligned} & 24 \mathrm{~V} \mathrm{DC} \\ & + \\ & + \\ & \hline \end{aligned}$			24 V DC $+$ $\stackrel{+}{+}+$	

－Input specifications（Extension module（extension cable type），input，input／output module）

Item	Specifications						
	FX5－8EXES	FX5－16EXVES	FX5－16ER／ES	FX5－16ET／ES	FX5－16ET／ESS	FX5－16ET／ES－H	FX5－16ET／ESS－H
Connection type	Screw terminal block						
Input type	Sink／source						
Input signal voltage	$24 \mathrm{VDC}+20 \%$ ，－15\％						
Input signal current	$4.0 \mathrm{~mA} / 24 \mathrm{~V}$ DC					$5.3 \mathrm{~mA} / 24 \mathrm{~V}$ DC	
Input impedance	$5.6 \mathrm{k} \Omega$					$4.3 \mathrm{k} \Omega$	
Input sensitivity current	3.0 mA or more					3.5 mA or more	
	1.5 mA or less						
Input response time	ON： $50 \mu \mathrm{~s}$ or less OFF： 150μ s or less					X0 to 5 $\mathrm{ON}: 2.5$ य or less OFF： $2.5 \mu \mathrm{~s}$ or less X6， 7 ON： $30 \mu \mathrm{~s}$ or less OFF： 50 Hs or less	
Input signal format	No－voltage contact input Sink：NPN open collector transistor Source：PNP open collector transistor						
Input circuit insulation	Photocoupler						
Indication of input operation	LED is lit when input is on						
Input circuit configuration		When using 24 Sink input w CPU modu Input mod 1 1 电立 Source input CPU modu	ice power supply s			using external powe	

- Input specifications (Extension module powered input/output module)

Item	Specifications			
	FX5-32ER/ES ${ }^{\text {FX5-32ET/ES }}$ (FX5-32ET/ESS	FX5-32ER/DS	FX5-32ET/DS	FX5-32ET/DSS
Connection type	Screw terminal block			
Input type	Sink/source			
Input signal voltage	24 V DC +20\%, -15\%			
Input signal current	$4.0 \mathrm{~mA} / 24 \mathrm{~V}$ DC			
Input impedance	$5.6 \mathrm{k} \Omega$			
Input ON	3.0 mA or more			
current \quad OFF	1.5 mA or less			
Input response time	ON: $50 \mu \mathrm{~s}$ or less OFF: $150 \mu \mathrm{~s}$ or less			
Input signal format	No-voltage contact input Sink: NPN open collector transistor Source: PNP open collector transistor			
Input circuit insulation	Photocoupler			
Indication of input operation	LED is lit when input is on			
Input circuit configuration	When using 24 V DC service power supply Sink input wiring Source input wiring When using external power supply Sink input wiring Source input wiring	Sink input w		

Output specifications

- Relay output (FX5S CPU module)

Item		Specifications		
		FX5S-30MR/ES	FX5S-40MR/ES	FX5S-60MR/ES
No. of output points		14 points	16 points	24 points
Connection type		Non-removable terminal block (M3 screws)		
Output type		Relay		
External power supply		30 V DC or less 240 V AC or less ("250 V AC or less" if not a CE, UL, cUL compliant item)		
Max. load		2 A/point The total load current per common terminal should be the following value. - 3 output points/common terminal: 6 A or less - 4 output points/common terminal: 8 A or less		
Min. load		5 V DC, 2 mA (reference values)		
Open circuit leakage current		-		
Response time	OFF-ON	Approx. 10 ms		
	ON-OFF	Approx. 10 ms		
Circuit insulation		Mechanical insulation		
Indication of output operation		LED is lit when output is on		
Output circuit configuration				

- Relay output (FX5UJ CPU module)

Item		Specifications		
		FX5U-24MR/ES	FX5UJ-40MR/ES	FX5UJ-60MR/ES
No. of output points		10 points (16 points)*	16 points	24 points
Connection type		Removable terminal block (M3 screws)		
Output type		Relay		
External power supply		30 V DC or less 240 V AC or less ("250 V AC or less" if not a CE, UL, cUL compliant item)		
Max. load		2 A/point The total load current per common terminal should be the following value. - 3 output points/common terminal: 6 A or less - 4 output points/common terminal: 8 A or less		
Min. load		$5 \mathrm{VDC}, 2 \mathrm{~mA}$ (reference values)		
Open circuit leakage current		-		
Response time	OFF - ON	Approx. 10 ms		
	ON \rightarrow OFF	Approx. 10 ms		
Circuit insulation		Mechanical insulation		
Indication of output operation		LED is lit when output is on		
Output circuit configuration				

*: The number in parentheses represents occupied points.

- Relay output (FX5U CPU module)

Item		Specifications		
		FX5U-32MR/ \square	FX5U-64MR/ \square	FX5U-80MR/ \square
No. of output points		16 points	32 points	40 points
Connection type		Removable terminal block (M3 screws)		
Output type		Relay		
External power supply		30 V DC or less 240 V AC or less ("250 V AC or less" if not a CE, UL, cUL compliant item)		
Max. load		2 A/point The total load current per common terminal should be the following value. - 4 output points/common terminal: 8 A or less - 8 output points/common terminal: 8 A or less		
Min. load		5 V DC, 2 mA (reference values)		
Open circuit leakage current		-		
Response time	OFF-ON	Approx. 10 ms		
	ON \rightarrow OFF	Approx. 10 ms		
Circuit insulation		Mechanical insulation		
Indication of output operation		LED is lit when output is on		
Output circuit configuration		A number is entered in the \square of [COM \square].		

- Relay output (FX5UC CPU module)

Items		Specifications
		FX5UC-32MR/DS-TS
No. of output points		16 points
Connection type		Spring clamp terminal block
Output type		Relay
External power supply		30 V DC or less 240 V AC or less ("250 V AC or less" if not a CE, UL, cUL compliant item)
Max. load		2 A/point The total load current per common terminal should be the following value. - 8 output points/common terminal: 4 A* or less
Min. load		$5 \mathrm{VDC}, 2 \mathrm{~mA}$ (reference values)
Open circuit leakage current		-
Response time	OFF-ON	Approx. 10 ms
	ON \rightarrow OFF	Approx. 10 ms
Circuit insulation		Mechanical insulation
Indication of output operation		LED is lit when output is on
Output circuit configuration		A number is entered in the \square of [COM \square].

*: 8 A or less when two common terminals are connected to the external part.

General, Power Supply, Input/Output Specifications

- Transistor output (FX5S CPU module)

Item		Specifications		
		FX5S-30MT/ \square	FX5S-40MT/■	FX5S-60MT/ \square
No. of output points		14 points	16 points	24 points
Connection type		Non-removable terminal block (M3 screws)		
Output type		Transistor/sink output (FX5S-पMT/ES) Transistor/source output (FX5S-■MT/ESS)		
External power supply		5 to 30 V DC		
Max. load		0.5 A/point The total load current per common terminal should be the following value. - 3 output points/common terminal: 0.6 A or less - 4 output points/common terminal: 0.8 A or less		
Open circuit leakage current		0.1 mA or less/30 V DC		
Voltage drop when ON	Y0 to Y3	1.0 V or less		
	Y4 and subsequent	1.5 V or less		
Response time	Y0 to Y3	$5 \mu \mathrm{~s}$ or less/10 mA or more (5 to 24 V DC)		
	Y4 and subsequent	0.2 ms or less/200 mA or more (24 V DC)		
Circuit insulation		Photocoupler		
Indication of output operation		LED is lit when output is on		
Output circuit configuration		Sink output wiring A number is entered in	Source out of [COMD]. A number	ing ered in the \square of $[+V \square]$.

- Transistor output (FX5UJ CPU module)

Item		Specifications		
		FX5UJ-24MT/ \square	FX5UJ-40MT/ \square	FX5UJ-60MT/ \square
No. of output points		10 points (16 points)*	16 points	24 points
Connection type		Removable terminal block (M3 screws)		
Output type		Transistor/sink output (FX5UJ-■MT/ES) Transistor/source output (FX5UJ-पMT/ESS)		
External power supply		5-30 V DC		
Max. load		0.5 A/point The total load current per common terminal should be the following value. - 3 output points/common terminal: 0.6 A or less - 4 output points/common terminal: 0.8 A or less		
Open circuit leakage current		0.1 mA or less/30 V DC		
Voltage drop when ON	Y0 to Y2	1.0 V or less		
	Y3 and subsequent	1.5 V or less		
Response time	Y 0 to Y 2	2.5 нs or less/10 mA or more (5-24 V DC)		
	Y3 and subsequent	0.2 ms or less/200 mA or more (24 V DC)		
Circuit insulation		Photocoupler		
Indication of output operation		LED is lit when output is on		
Output circuit configuration		Sink output wiring A number is entered in	Source outp of [COMD]. A number	ing ered in the \square of [+V \square]

[^68]- Transistor output (FX5U CPU module)

Item		Specifications		
		FX5U-32MT/ \square	FX5U-64MT/■	FX5U-80MT/■
No. of output points		16 points	32 points	40 points
Connection type		Screw terminal block		
Output type		Transistor/sink output (FX5U-■MT/ES, FX5U-■MT/DS) Transistor/source output (FX5U-■MT/ESS, FX5U-■MT/DSS)		
External power supply		$5-30 \mathrm{~V}$ DC		
Max. load		0.5 A/point The total load current per common terminal should be the following value. - 4 output points/common terminal: 0.8 A or less - 8 output points/common terminal: 1.6 A or less		
Open circuit leakage current		0.1 mA or less/30 V DC		
Voltage drop when ON	Y0 to Y3	1.0 V or less		
	Y4 and subsequent	1.5 V or less		
Response time	Y0 to Y3	2.5 ¢ or less/10 mA or more (5-24 V DC)		
	Y4 and subsequent	0.2 ms or less/200 mA or more (24 V DC)		
Circuit insulation		Photocoupler		
Indication of output operation		LED is lit when output is on		
Output circuit configuration			Source out	iring tered in the \square of $[+\mathrm{V} \square]$

- Transistor output (FX5UC CPU module)

Item		Specifications		
		FX5UC-32MT/ \square	FX5UC-64MT/ \square	FX5UC-96MT/ \square
No. of output points		16 points	32 points	48 points
Connection type		Connector (FX5UC-DMT/D(SS)) Spring clamp terminal block (FX5UC-32MT/DS(S)-TS)		
Output type		Transistor/sink output (FX5UC-पMT/D(S-TS)) Transistor/source output (FX5UC-■MT/DSS(-TS))		
External power supply		5-30 V DC		
Max. load		Y0 to Y3: $0.3 \mathrm{~A} / 1$ point Y4 and subsequent: $0.1 \mathrm{~A} / 1$ point The total load current per common terminal should be the following value. - 8 output points/common terminal: 0.8 A or less*		
Open circuit leakage current		0.1 mA or less/30 V DC		
Voltage drop when ON	Y0 to Y3	1.0 V or less		
	Y4 and subsequent	1.5 V or less		
Response time	Y0 to Y3	$2.5 \mu \mathrm{~s}$ or less/10 mA or more (5-24 V DC)		
	Y4 and subsequent	0.2 ms or less/100 mA (24 V DC)		
Circuit insulation		Photocoupler		
Indication of output operation		LED is lit when output is on (DISP switch: OUT) (FX5UC-पMT/D(SS)) LED is lit when output is on (FX5UC-32MT/DS(S)-TS)		
Output circuit configuration		Sink output wiring A number is entered in	Sou Load Fuse DC powe \square of [COMD]. A number	tput wiring tered in the \square of $[+\mathrm{V} \square]$.

*: 1.6 A or less when two common terminals are connected outside.

General, Power Supply, Input/Output Specifications

- Safety outputs specifications (safety main module)

Item		Specifications
		FX5-SF-MU4T5*3
Connection type		Spring clamp terminal block
Number of outputs		4 points
Output method		Source output, short-circuit protection, cross-circuit detection*1
Output voltage		18.4 V DC to 30.0 V DC
Output current		$\begin{aligned} & \hline 2.0 \mathrm{~A}\left(@ T \mathrm{~A} \leq 45^{\circ} \mathrm{C}\right) \\ & 1.5 \mathrm{~A}\left(@ \mathrm{~T}_{\mathrm{A}} \leq 55^{\circ} \mathrm{C}\right) \end{aligned}$
Total current Isum		$\begin{aligned} & \text { 4.0 A }\left(@ T A \leq 45^{\circ} \mathrm{C}\right) \\ & \text { 3.0 }\left(@ T \mathrm{~A} \leq 55^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$
Leak current (in the switch OFF status)		1 mA or less
Indication of output operation		LED lights when an output is ON.
Response time*2 (10/11)	Program 1, 2, 4, 5, 6, and 9	29 ms
	Program 3.1, 7, and 8	9 ms
	Program 3.2	$81 \mathrm{~ms} / 29 \mathrm{~ms}$
Response time*2 (12/3)	Program 4, 5, and 6	29 ms
	Program 1, 2, 3, 7, 8, and 9	9 ms
Response time (XSO)		9 ms
Off delay time		$0 / 0.5 / 1 / 1.5 / 2 / 2.5 / 3 / 3.5 / 4 / 5 \mathrm{~s}$
Number of occupied input/output points		8 points (Either input or output is available for counting.)

*1: A cross-circuit detection is performed only in the module
*2: A response time without any sensors. When sensors are connected, the data of the connected sensors is applied and the minimum switch-off time is extended.
*3: For details regarding the test outputs, refer to the manual.

- Transistor output (sink output, extension module)

Item		Specifications										
		$\begin{gathered} \text { FX5- } \\ \text { C16EYT/D } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { FX5- } \\ \text { C32EYT/D } \\ \hline \end{gathered}$	FX5-C32ET/D	$\begin{array}{\|c\|} \hline \text { FX5-C32EYT/ } \\ \text { D-TS } \\ \hline \end{array}$	$\begin{gathered} \text { FX5-C32ET/ } \\ \text { DS-TS } \\ \hline \end{gathered}$	$\begin{gathered} \text { FX5-8EYT/ } \\ \text { ES } \\ \hline \end{gathered}$	$\begin{gathered} \text { FX5-16EYT/ } \\ \text { ES } \\ \hline \end{gathered}$	$\begin{gathered} \text { FX5-16ET/ } \\ \text { ES } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { FX5-32ET/ } \\ E S \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { FX5-32ET/ } \\ \text { DS } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { FX5-16ET/ } \\ \text { ES-H } \\ \hline \end{gathered}$
Connection type		Connector			Spring clamp terminal block		Screw terminal block					
Output type		Transistor output/sink output										
External power supply		5 to 30 V DC										
Max. load		$0.1 \mathrm{~A} / 1$ point The total load current per common terminal should be the following value. - 8 output points/common terminal: 0.8 A or less					$0.5 \mathrm{~A} / 1$ point The total load current per common terminal should be the following value. - 4 output points/common terminal: 0.8 A or less - 8 output points/common terminal: 1.6 A or less					
Open circuit leakage current		$0.1 \mathrm{~mA} / 30 \mathrm{~V}$ DC										
Voltage drop when ON		1.5 V or less										
Response time	OFF \rightarrow ON	0.2 ms or less/100 mA (at 24 VDC)					0.2 ms or less $/ 200 \mathrm{~mA}$ (at 24 VDC)					Y0, Y1, Y4, Y5: $2.5 \mu \mathrm{~s}$ or less/10 mA (at 5 to 24 VDC) Y2, Y3, Y6, Y7: 0.2 ms or less/ 200 mA (at 24 V DC)
	$\mathrm{ON} \rightarrow$ OFF	0.2 ms or less/ 100 mA (at 24 V DC)					0.2 ms or less/200 mA (at 24 V DC)					$\begin{aligned} & \text { Y0, Y1, Y4, Y5: } \\ & 2.5 \mu \mathrm{~s} \text { or } \\ & \text { less/ } 10 \mathrm{~mA} \\ & \text { (at } 5 \text { to } 24 \mathrm{VDC} \text {) } \\ & \mathrm{Y} 2, \mathrm{Y} 3, \mathrm{Y} 6, \mathrm{Y}: \\ & 0.2 \mathrm{~ms} \text { or less/ } \\ & 200 \mathrm{~mA} \\ & \text { (at } 24 \mathrm{VDC} \text {) } \\ & \hline \end{aligned}$
Circuit insulation		Photocoupler										
Indication of output operation		LED is lit when output is on	LED is lit when output is on (F/L of DISP switch is used to change between lower and higher numbers.)	LED is lit when output is on (DISP switch: OUT)	LED is lit when output is on		LED is lit when output is on					
Output circuit configuration												

General, Power Supply, Input/Output Specifications

liem		Specifications										
		$\begin{aligned} & \text { FX5-C16EYT/ } \\ & \text { DSS } \end{aligned}$	$\begin{gathered} \text { FX5-C32EYT/ } \\ \text { DSS } \end{gathered}$	$\begin{gathered} \text { FX5-C32ET/ } \\ \text { DSS } \end{gathered}$	$\begin{aligned} & \hline \text { FX5-C32EYT/ } \\ & \text { DSS-TS } \end{aligned}$	$\begin{gathered} \text { FX5-C32ET/ } \\ \text { DSS-TS } \end{gathered}$	$\begin{aligned} & \text { FX5-8EYT/ } \\ & \text { ESS } \end{aligned}$	$\begin{aligned} & \text { FX5-16EYT// } \\ & \text { ESS } \end{aligned}$	$\begin{aligned} & \text { FX5-16ET/ } \\ & \text { ESS } \end{aligned}$	$\begin{aligned} & \text { FX5-32ET/ } \\ & \text { ESS } \end{aligned}$	$\begin{gathered} \text { FX5-32ET/ } \\ \text { DSS } \end{gathered}$	$\begin{aligned} & \text { FX5-16ET/ } \\ & \text { ESS-H } \end{aligned}$
Connection type		Connector			Spring clamp terminal block		Screw terminal block					
Output type		Transistor output/sink output										
External power supply		5 to 30 V DC										
Max. load		$0.1 \mathrm{~A} / 1$ point The total load current per common terminal should be the following value. - 8 output points/common terminal: 0.8 A or less					0.5 A/1 point The total load current per common terminal should be the following value. - 4 output points/common terminal: 0.8 A or less - 8 output points/common terminal: 1.6 A or less					
Open circuit leakage current		0.1 mA/30 V DC										
Voltage drop when ON		1.5 V or less										
Response time	OFF-ON	0.2 ms or less/ $/ 100 \mathrm{~mA}$ (at 24 V DC)					0.2 ms or less/200 mA (at 24 V DC)					Y0, Y1, Y4, Y5: 2.5 us or less/ 10 mA (at 5 to 24 V DC) Y2, Y3, Y6, Y7: 0.2 ms or less/ 200 mA (at 24 V DC)
	ON-OFF	0.2 ms or less/ $/ 100 \mathrm{~mA}$ (at 24 V DC)					0.2 ms or less/200 mA (at 24 V DC)					$\begin{aligned} & \mathrm{Y} 0, \mathrm{Y} 1, \mathrm{Y} 4, \mathrm{Y} 5: \\ & 2.5 \mu \mathrm{~s} \text { or } \\ & \text { less } / 10 \mathrm{~mA} \\ & \text { (at } 5 \text { to } 24 \mathrm{VDC} \text {) } \\ & \mathrm{Y} 2, \mathrm{Y} 3, \mathrm{Y} 6, \mathrm{Y} 7 \\ & 0.2 \mathrm{~ms} \text { or less/ } \\ & 200 \mathrm{~mA} \\ & \text { (at } 24 \mathrm{VDC} \text {) } \\ & \hline \end{aligned}$
Circuit insulation		Photocoupler										
Indication of output operation		LED is lit when output is on	LED is lit when output is on (F/L of DISP switch is used to change between lower and higher numbers.)	LED is lit when output is on (DISP switch: OUT)	LED is lit when output is on		LED is lit when output is on					
Output circuit configuration												

- Relay output (extension module)

Item		Specifications					
		FX5-8EYR/ES	FX5-16EYR/ES	FX5-16ER/ES	FX5-32ER/ES	FX5-32ER/DS	FX5-C16EYR/D-TS
Connection type		Screw terminal block					Spring clamp terminal block
Output type		Relay					
External power supply		30 V DC or less 240 V AC or less ("250 V AC or less" if not a CE, UL, cUL compliant item)					
Max. load		2 A/1 point The total load current per common terminal should be the following value. - 4 output points/common terminal: 8 A or less - 8 output points/common terminal: 8 A or less					2 A/1 point The total load current per common terminal should be the following value. - 8 output points/common terminal: 4 A or less*
Min. load		$5 \mathrm{VDC}, 2 \mathrm{~mA}$ (reference values)					
Response time	OFF-ON	Approx. 10 ms					
	ON - OFF	Approx. 10 ms					
Circuit insulation		Mechanical insulation					
Indication of output operation		LED is lit when output is on					
Output circuit configuration							

[^69]
- Built-in analog input

Item		Specifications
		FX5U CPU module
Analog input points		2 points (2 channels)
Analog input	Voltage	0 to 10 VDC (input resistance $115.7 \mathrm{k} \Omega$)
Digital output		Unsigned 12-bit binary
Device allocation		SD6020 (ch1 A/D converted input data) SD6060 (ch2 A/D converted input data)
Input characteristics, maximum resolution	Digital output value	0 to 4000
	Maximum resolution	2.5 mV
Precision (Accuracy in respect to full-scale digital output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	Within $\pm 0.5 \%$ (± 20 digit*2)
	Ambient temperature 0 to $55^{\circ} \mathrm{C}$	Within $\pm 1.0 \%$ (± 40 digit*2)
	Ambient temperature -20 to $0^{\circ} \mathrm{C}^{* 1}$	Within $\pm 1.5 \%$ (± 60 digit*2)
Conversion speed		$30 \mu \mathrm{~s} /$ channels (data refreshed every operation cycle)
Absolute maximum input		-0.5 V, +15 V
Isolation method		Non-isolation from the CPU module internal circuit, Non-isolation between the input terminals (channels)
Number of occupied input/output points		0 points (does not pertain to the max. No. of input/output points of the CPU module.)
Terminal block used		European-type terminal block

*1: Products manufactured earlier than June 2016 do not support this specification.
*2: The term "digit" refers to "digital value".

- Built-in analog output

Item		Specifications
		FX5U CPU module
Analog output points		1 point (1 channel)
Digital input		Unsigned 12-bit binary
Analog output	Voltage	0 to 10 V DC (external load resistance $2 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)
Device allocation		SD6180 (Output setting data)
Output characteristics, maximum resolution*1	Digital input value	0 to 4000
	Maximum resolution	2.5 mV
Accuracy*2 (Accuracy in respect to full-scale analog output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	Within $\pm 0.5 \%$ (± 20 digit*4)
	Ambient temperature 0 to $55^{\circ} \mathrm{C}$	Within $\pm 1.0 \%$ (± 40 digit*4)
	Ambient temperature -20 to $0^{\circ} \mathrm{C}^{* 3}$	Within $\pm 1.5 \%$ (± 60 digit*4)
Conversion speed		30μ ((data refreshed every operation cycle)
Isolation method		Non-isolation from the CPU module internal circuit
Number of occupied input/output points		0 points (does not pertain to the max. No. of input/output points of the CPU module.)
Terminal block used		European-type terminal block

*1: There is a dead band near 0 V output, which is an area where some analog output values do not reflect digital input values.
*2: External load resistance is set to $2 \mathrm{k} \Omega$ when shipped from the factory. Thus, output voltage will increase somewhat if the resistance is set higher than $2 \mathrm{k} \Omega$ When the resistance is $1 \mathrm{M} \Omega$, output voltage increases maximum 2%.
*3: Products manufactured earlier than June 2016 do not support this specification.
*4: The term "digit" refers to "digital value".

- Built-in RS-485 communication

Item	\quad FX5U/FX5UC CPU module
Transmission standards	Conforms to RS-485/RS-422 specifications
Data transmission speed	Max. 115.2 kbps
Communication method	Full-duplex (FDX) / Half-duplex (HDX)
Maximum transmission distance	50 m
Protocol type	MELSOFT connection, MC protocol (1C/3C/4C frames), non-protocol communication, MODBUS RTU communication, inverter communication, N:N network, parallel link, communication protocol support
Circuit insulation	Non-isolation
Terminal resistors	Built-in (OPEN/110 $\Omega / 330 \Omega$)
Terminal block used	European-type terminal block

General, Power Supply, Input/Output Specifications

Item		Speciications
		FX5S/FX5UJ/FX5U/FX5UC CPU module
Data transmission speed		100/10 Mbps
Communication method		Full-duplex (FDX) / Half-duplex (HDX)*1
Interface		RJ45 connector
Transmission method		Base band
Maximum segment length		100 m (The distance between hub and node) ${ }^{* 2}$
Cascade connection	100BASE-TX	Max. 2 stages*3
	10BASE-T	Max. 4 stages*3
Protocol type		CC-Link IE Field Network Basic, MELSOFT connection, SLMP server (3E/1E frame), socket communication, communication protocol support, FTP server, FTP client, MODBUS/TCP communication, SNTP client, Web server (HTTP), simple CPU communication function
Number of connections		Total 8 connections*4*5 (Up to 8 external devices can access one CPU module at the same time.)
Hub*1		Hubs with 100BASE-TX or 10BASE-T ports*6 are available.
\|P address*7		Initial value: 192.168.3.250
Circuit insulation		Pulse transformer insulation
Cable used*8	For 100BASE-TX connection	Ethernet cable of category 5 or higher (STP cable)
	For 10BASE-T connection	Ethernet cable of category 3 or higher (STP cable)

*1: IEEE802.3x flow control is not supported.
*2: For maximum segment length (length between hubs), consult the manufacturer of the hub used.
*3: Number of stages that can be connected when a repeater hub is used. When a switching hub is used, check the specifications of the switching hub used.
*4: One device connected to MELSOFT is not included in the number of connections. (The second and subsequent devices are included.)
*5: The CC-Link IE Field Network Basic, FTP server, FTP client, SNTP client, Web server and simple CPU communication function are not included in the number of connections.
*6: The ports must comply with the IEEE802.3 100BASE-TX or IEEE802.3 10BASE-T standards.
*7: If the 1st octet is 0 or 127, a parameter error (2222H) will result. (Example: 0.0.0.0, 127.0.0.0 etc.)
*8: A straight cable can be used. If a personal computer or GOT and CPU module are directly connected a cross cable can be used.

- Built-in USB communication

Item	Specifications
Data transmission speed	Full Speed (Max. 12 Mbps)
Interface	Mini-B

Built-in positioning function

Item	FX5UJ CPU module	
Number of control axes	3 axes	4 axes* (Simple linear interpolation by 2-axis simultaneous start)
Maximum frequency	FX5S: 100 kpps (100 kpps in pulses) FX5UJ, FX5U, FX5UC: 200kpps (200 kpps in pulses)	
Positioning program	Sequence program, Table operation	
Pulse output instruction	PLSY and DPLSY instructions	
Positioning instruction	DSZR, DDSZR, DVIT, DDVIT, TBL, DRVTBL, DRVMUL, DABS, PLSV, DPLSV, DRVI, DDRVI, DRVA, and DDRVA instructions	

*: The number of control axes is 2 when the pulse output mode is CW/CCW mode.

- Built-in high-speed counter function

Item	Specifications		
	Input specifications	Fequency	
		FX5S/FX5UJ CPU module	FX5U/FX5UC CPU module
Types of high-speed counters	1-phase, 1-input counter (S/W)	$100 \mathrm{kHz}{ }^{* 1}$	200 kHz
	1-phase, 1-input counter (H/W)	$100 \mathrm{kHz}{ }^{* 1}$	200 kHz
	1-phase, 2-input counter	100 kHz	200 kHz
	2-phase, 2-input counter [1 edge count]	100 kHz	200 kHz
	2-phase, 2-input counter [2 edge count]	50 kHz	100 kHz
	2-phase, 2-input counter [4 edge count]	25 kHz	50 kHz
Input allocation	Parameter setup*2		
High-speed counter instruction	[High-speed processing instruction] - Setting 32-bit data comparison (DHSCS) - Resetting 32-bit data comparison (DHSCR) - Comparison of 32-bit data band (DHSZ) - Start/stop of the 16-bit data high-speed I/O function (HIOEN) - Start/stop of the 32-bit data high-speed I/O function (DHIOEN) [High-speed transfer instruction of current value] - High-speed current value transfer of 16-bit data (HCMOV) - High-speed current value transfer of 32-bit data (DHCMOV)		

*1: 1-phase, 1-input $100 \mathrm{kHz}: 4 \mathrm{ch}, 10 \mathrm{kHz}: 4 \mathrm{ch}$
*2: For details, refer to the manual.

Extension device specifications

I/O modules

- Powered input/output modules

Model	Total No. of points	No. of input/output points, Input/output type				Connection type
			Input		Output	
FX5-32ER/ES	32 points	16 points	24 V DC (Sink/source)	16 points	Relay	Screw terminal block
FX5-32ET/ES					Transistor (Sink)	
FX5-32ET/ESS					Transistor (Source)	
FX5-32ER/DS					Relay	
FX5-32ET/DS					Transistor (Sink)	
FX5-32ET/DSS					Transistor (Source)	

- Input module

Model	Total No. of points	No. of input/output points, Input/output type				Connection type
			Input		Output	
FX5-8EX/ES	8 points	8 points	24 V DC (Sink/source)	-	-	crew terminal block
FX5-16EX/ES	16 points	16 points				Scew terminal block
FX5-C16EX/D			24 V DC (Sink)			
FX5-C16EX/DS			24 V DC (Sink/source)			Connector
FX5-C32EX/D	32 points	32 points	24 V DC (Sink)			Connector
FX5-C32EX/DS			24 V DC (Sink/source)			
FX5-C32EX/DS-TS						Spring clamp terminal block

- Output module

Model	Total No. of points	No. of input/output points, Input/output type				Connection type
			Input		Output	
FX5-8EYR/ES	8 points	-	-	8 points	Relay	Screw terminal block
FX5-8EYT/ES					Transistor (Sink)	
FX5-8EYT/ESS					Transistor (Source)	
FX5-16EYR/ES	16 points			16 points	Relay	
FX5-16EYT/ES					Transistor (Sink)	
FX5-16EYT/ESS					Transistor (Source)	
FX5-C16EYT/D					Transistor (Sink)	Connector
FX5-C16EYT/DSS					Transistor (Source)	
FX5-C16EYR/D-TS					Relay	Spring clamp terminal block
FX5-C32EYT/D	32 points			32 points	Transistor (Sink)	Connector
FX5-C32EYT/D-TS						Spring clamp terminal block
FX5-C32EYT/DSS					Transistor (Source)	Connector
FX5-C32EYT/DSS-TS						Spring clamp terminal block

Model	Total No. of points	No. of input/output points, Input/output type				Connection type
			Input		Output	
FX5-16ER/ES	16 points	8 points	24 V DC (Sink/source)	8 points	Relay	Screw terminal block
FX5-16ET/ES					Transistor (Sink)	
FX5-16ET/ESS					Transistor (Source)	
FX5-C32ET/D	32 points	16 points	24 V DC (Sink)	16 points	Transistor (Sink)	Connector
FX5-C32ET/DS-TS			24 V DC (Sink/source)			Spring clamp terminal block
FX5-C32ET/DSS					Transistor (Source)	Connector
FX5-C32ET/DSS-TS						Spring clamp terminal block

- High-speed pulse input/output module

Model	Total No. of points	No. of input/output points, Input/output type				Connection type
			Input		Output	
FX5-16ET/ES-H*	16 points	8 points	24 V DC (Sink/source)	8 points	Transistor (Sink)	Screw terminal block
FX5-16ET/ESS-H*					Transistor (Source)	

[^70]\diamond Expansion adapter

- FX5-232ADP

Item	
Transmission standard/ Maximum transmission distance/insulation	Conforming to RS-232C/15 m/Photocoupler (Between communication line and CPU module)
External device connection method	9-pin D-sub, male
Communication method	Half-duplex bidirectional/Full-duplex bidirectional
Protocol type	MELSOFT connection, MC protocol (1C/3C/4C frame), non-protocol communication, MODBUS RTU communication, predefined protocol support
Baud rate	$300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 / 38400 / 57600 / 115200$ (bps)*1
Compatible CPU module	FX5S, FX5UJ, FX5U, FX5UC
Number of occupied input/output points	O points (no occupied points)
Control power (supplied from CPU module)	$5 \mathrm{~V} \mathrm{DC}, 30 \mathrm{~mA} / 24 \mathrm{~V} \mathrm{DC}, 30 \mathrm{~mA}^{* 2}$

*1: The communication method and baud rate vary depending on the type of communication.
*2: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

- FX5-485ADP

Item	
Transmission standard/ Maximum transmission distance/insulation	Conforming to RS-485, RS-422/1200 m/Photocoupler (Between communication line and CPU module)
External device connection method	European-type terminal block
Communication method	Half-duplex bidirectional/Full-duplex bidirectional
Protocol type	MELSOFT connection, MC protocol (1C/3C/4C frame), non-protocol communication, MODBUS RTU communication, inverter communication, N:N network, parallel link, predefined protocol support
Baud rate	$300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 / 38400 / 57600 / 115200$ (bps)*1
Terminal resistors	Built-in (OPEN/110 $\Omega / 330 \Omega$)
Compatible CPU module	FX5S, FX5UJ, FX5U, FX5UC
Number of occupied input/output points	Opoints (no occupied points)
Control power (supplied from CPU module)	$5 \mathrm{~V} \mathrm{DC} ,20 \mathrm{~mA} / 24 \mathrm{~V} \mathrm{DC} ,\mathrm{30} \mathrm{mA*2}$

*1: The communication method and baud rate vary depending on the type of communication.
*2: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

- FX5-4A-ADP

Item	Specifications			
Analog input points	2 points (2 channels)			
Analog input voltage	-10 to +10 V DC (input resistance $1 \mathrm{M} \Omega$)			
Analog input current	-20 to +20 mA DC (input resistance 250Ω)			
Digital output value	14-bit binary value			
Input characteristics, resolution*1		Analog input range	Digital output value	Resolution
	Voltage	0 to 10 V	0 to 16000	$625 \mu \mathrm{~V}$
		0 to 5 V	0 to 16000	$312.5 \mu \mathrm{~V}$
		1 to 5 V	0 to 12800	$312.5 \mu \mathrm{~V}$
		-10 to +10 V	-8000 to +8000	1250 ¢ V
	Current	0 to 20 mA	0 to 16000	$1.25 \mu \mathrm{~A}$
		4 to 20 mA	0 to 12800	$1.25 \mu \mathrm{~A}$
		-20 to +20 mA	-8000 to +8000	$2.5 \mu \mathrm{~A}$
Accuracy (Accuracy in respect to fullscale digital output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: within $\pm 0.1 \%$ (± 16 digits*2) Ambient temperature 0 to $55^{\circ} \mathrm{C}$: within $\pm 0.2 \%$ (± 32 digits*2) Ambient temperature -20 to $0^{\circ} \mathrm{C}$: within $\pm 0.3 \%$ (± 48 digits*2)			
Analog output points	2 points (2 channels)			
Digital input	14-bit binary value			
Analog output voltage	-10 to +10 V DC (external load resistance value $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)			
Analog output current	0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(external} \mathrm{load} \mathrm{resistance} \mathrm{value} 0$ to 500Ω)			
Output characteristics, resolution*1		Analog output range	Digital value	Resolution
	Voltage	0 to 10 V	0 to 16000	$625 \mu \mathrm{~V}$
		0 to 5 V	0 to 16000	$312.5 \mu \mathrm{~V}$
		1 to 5 V	0 to 16000	$250 \mu \mathrm{~V}$
		-10 to +10 V	-8000 to +8000	1250 \% V
	Current	0 to 20 mA	0 to 16000	$1.25 \mu \mathrm{~A}$
		4 to 20 mA	0 to 16000	$1 \mu \mathrm{~A}$
Accuracy (Accuracy in respect to fullscale analog output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}: \pm 0.1 \%$ (Voltage $\pm 20 \mathrm{mV}$, Current $\pm 20 \mu \mathrm{~A}$) Ambient temperature 0 to $55^{\circ} \mathrm{C}: \pm 0.2 \%$ (Voltage $\pm 40 \mathrm{mV}$, Current $\pm 40 \mu \mathrm{~A}$) Ambient temperature -20 to $0^{\circ} \mathrm{C}: \pm 0.3 \%$ (Voltage $\pm 60 \mathrm{mV}$, Current $\pm 60 \mu \mathrm{~A}$)			
External device connection method	European-type terminal block			
Absolute maximum input	Voltage: $\pm 15 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$			
Conversion speed	FX5S CPU module: Maximum 2.2 ms (The data will be updated at every scan time of the PLC.) FX5UJ/FX5U/FX5UC CPU module: Maximum 2.0 ms (The data will be updated at every scan time of the PLC.)			
Isolation method	Between input terminal and PLC: Photocoupler Between input channels: Non-isolation			
Power supply	24 V DC +20\%, -15\% 100 mA (external power supply)*3 $5 \mathrm{VDC}, 10 \mathrm{~mA}$ (internal power supply)*3			
Compatible CPU module	FX5S: Compatible from initial product FX5UJ: Ver. 1.010 or later			FX5U, FX5UC: Ver. 1.240 or later
Number of occupied input/output points	0 points (no occupied points)			

[^71]*3: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

General, Power Supply, Input/Output Specifications

- FX5-4AD-ADP

Item	Specifications			
Analog input points	4 points (4 channels)			
External device connection method	European-type terminal block			
Analog input voltage	-10 to +10 V DC (input resistance $1 \mathrm{M} \Omega$)			
Analog input current	-20 to +20 mA DC (input resistance 250Ω)			
Digital output value	14-bit binary value			
Input characteristics, resolution*1	Analog input range		Digital output value	Resolution
	Voltage	0 to 10 V	0 to 16000	$625 \mu \mathrm{~V}$
		0 to 5 V	0 to 16000	$312.5 \mu \mathrm{~V}$
		1 to 5 V	0 to 12800	$312.5 \mu \mathrm{~V}$
		-10 to +10 V	$\begin{aligned} & -8000 \text { to } \\ & +8000 \end{aligned}$	$1250 \mu \mathrm{~V}$
	Current	0 to 20 mA	0 to 16000	$1.25 \mu \mathrm{~A}$
		4 to 20 mA	0 to 12800	$1.25 \mu \mathrm{~A}$
		-20 to +20 mA	$\begin{aligned} & \hline-8000 \text { to } \\ & +8000 \end{aligned}$	$2.5 \mu \mathrm{~A}$
Accuracy (Accuracy in respect to full-scale digital output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: within $\pm 0.1 \%$ (± 16 digit $^{* 2}$) Ambient temperature 0 to $55^{\circ} \mathrm{C}$: within $\pm 0.2 \%(\pm 32$ digit**) Ambient temperature -20 to $0^{\circ} \mathrm{C}^{* 3}$: within $\pm 0.3 \%(\pm 48$ digit**)			
Absolute maximum input	Voltage: $\pm 15 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$			
Conversion speed	FX5S CPU module: Maximum $500 \mu \mathrm{~s}$ (The data will be updated at every scan time of the PLC.) FX5UJ/FX5U/FX5UC CPU module: Maximum 450μ s (The data will be updated at every scan time of the PLC.)			
Isolation method	Between input terminal and PLC: Photocoupler Between input terminal channels: Non-isolation			
Power supply	$24 \mathrm{VDC}, 20 \mathrm{~mA}$ (internal power supply)*4 $5 \mathrm{VDC}, 10 \mathrm{~mA}$ (internal power supply)*4			
Compatible CPU module	FX5S, FX5UJ, FX5U, FX5UC			
Number of occupied input/ output points	0 points (no occupied points)			

*1: For the input conversion characteristic, refer to manuals of each product.
*2: Digit refers to digital values.
*3: Products manufactured earlier than June 2016 do not support this specification.
*4: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

- FX5-4AD-PT-ADP

Item		Specifications
Analog input points		4 points (4 channels)
External device connection method	European-type terminal block	
Usable resistance temperature detector*1	Pt100 Nit00 (DIN $43760 ~ 1987)$	
Temperature measuring range	Pt100	-200 to $850^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1562^{\circ} \mathrm{F}\right)$
	Ni100	-60 to $250^{\circ} \mathrm{C}\left(-76\right.$ to $\left.482^{\circ} \mathrm{F}\right)$

*1: Only 3-wire type resistance temperature detectors can be used.
*2: For details of conversion speeds, refer to the manual.
*3: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

- FX5-4AD-TC-ADP

Item			Specifications	
Analog input points			4 points (4 channels)	
External device connection method			European-type terminal block	
Usable thermocouple			K, J, T, B, R, S	
Temperature measuring range		K	-200 to $1200^{\circ} \mathrm{C}\left(-328\right.$ to $2192^{\circ} \mathrm{F}$)	
		J	-40 to $750^{\circ} \mathrm{C}\left(-40\right.$ to $1382^{\circ} \mathrm{F}$)	
		T	-200 to $350^{\circ} \mathrm{C}\left(-328\right.$ to $662^{\circ} \mathrm{F}$)	
		B	600 to $1700^{\circ} \mathrm{C}\left(1112\right.$ to $\left.3092^{\circ} \mathrm{F}\right)$	
		R	0 to $1600^{\circ} \mathrm{C}\left(32\right.$ to $2912^{\circ} \mathrm{F}$)	
		S	0 to $1600^{\circ} \mathrm{C}$ (32 to $2912^{\circ} \mathrm{F}$)	
Digital output value			16-bit signed binary value	
		K	-2000 to 12000 (-3280 to 21920)	
		J	-400 to 7500 (-400 to 13820)	
		T	-2000 to 3500 (-3280 to 6620)	
		B	6000 to 17000 (11120 to 30920)	
		R	0 to 16000 (320 to 29120)	
		S	0 to 16000 (320 to 29120)	
	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	K	$\pm 3.7^{\circ} \mathrm{C}\left(-100 \text { to } 1200^{\circ} \mathrm{C}\right)^{* 2}$	$\pm 4.9^{\circ} \mathrm{C}\left(-150 \text { to }-100^{\circ} \mathrm{C}\right)^{* 2}$
			$\pm 7.2^{\circ} \mathrm{C}\left(-200 \text { to }-150^{\circ} \mathrm{C}\right)^{* 2}$	
		J	$\pm 2.8^{\circ} \mathrm{C}$	
		T	$\pm 3.1^{\circ} \mathrm{C}\left(0 \text { to } 350^{\circ} \mathrm{C}\right)^{* 2}$	$\pm 4.1^{\circ} \mathrm{C}\left(-100 \text { to } 0^{\circ} \mathrm{C}\right)^{* 2}$
			$\pm 5.0^{\circ} \mathrm{C}\left(-150 \text { to }-100^{\circ} \mathrm{C}\right)^{* 2}$	$\pm 6.7^{\circ} \mathrm{C}\left(-200 \text { to }-150^{\circ} \mathrm{C}\right)^{* 2}$
		B	$\pm 3.5^{\circ} \mathrm{C}$	
		R	$\pm 3.7^{\circ} \mathrm{C}$	
		S	$\pm 3.7^{\circ} \mathrm{C}$	
	Ambient temperature -20 to $55^{\circ} \mathrm{C}$	K	$\pm 6.5^{\circ} \mathrm{C}\left(-100 \text { to } 1200^{\circ} \mathrm{C}\right)^{* 2}$	$\pm 7.5^{\circ} \mathrm{C}\left(-150 \text { to }-100^{\circ} \mathrm{C}\right)^{* 2}$
		K	$\pm 8.5^{\circ} \mathrm{C}\left(-200 \text { to }-150^{\circ} \mathrm{C}\right)^{* 2}$	
		J	$\pm 4.5^{\circ} \mathrm{C}$	
		T	$\pm 4.1^{\circ} \mathrm{C}\left(0 \text { to } 350^{\circ} \mathrm{C}\right)^{* 2}$	$\pm 5.1^{\circ} \mathrm{C}\left(-100 \text { to } 0^{\circ} \mathrm{C}\right)^{* 2}$
		T	$\pm 6.0^{\circ} \mathrm{C}\left(-150 \text { to }-100^{\circ} \mathrm{C}\right)^{* 2}$	$\pm 7.7^{\circ} \mathrm{C}\left(-200 \text { to }-150^{\circ} \mathrm{C}\right)^{* 2}$
		B	$\pm 6.5^{\circ} \mathrm{C}$	
		R	$\pm 6.5^{\circ} \mathrm{C}$	
		S	$\pm 6.5^{\circ} \mathrm{C}$	
Resolution		K, J, T	$0.1^{\circ} \mathrm{C}\left(0.1\right.$ to $\left.0.2{ }^{\circ} \mathrm{F}\right)$	
		B, R, S	0.1 to $0.3^{\circ} \mathrm{C}$ (0.1 to $0.6^{\circ} \mathrm{F}$)	
Conversion speed*3			About $85 \mathrm{~ms} /$ channel	
Isolation method			Between input terminal and CPU module: Photocoupler Between input terminal channels: Non-isolation	
Power supply			$24 \mathrm{VDC}, 20 \mathrm{~mA}$ (internal power supply)*4 $5 \mathrm{VDC}, 10 \mathrm{~mA}$ (internal power supply)*4	
Compatible CPU module			FX5S, FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.040 or later	
Number of occupied I/O points			0 points (no occupied points)	

*1: Obtaining sufficient accuracy requires a warm-up of 45 minutes (energization).
*2: Accuracy varies depending on the measured temperature range in ().
*3: For details of conversion speeds, refer to the manual.
*4: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

- FX5-4DA-ADP

liem	Specilications				
Analog output points	4 points (4 channels)				
External device connection method	European-type terminal block				
Analog output voltage	-10 to $+10 \mathrm{~V} \mathrm{DC} \mathrm{(external} \mathrm{load} \mathrm{resistance} \mathrm{value} 1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$)				
Analog output current	0 to 20 mA DC (external load resistance value 0 to 500Ω)				
Digital input	14-bit binary value				
Output characteristics, resolution*1		Analog output range	Digita		Resolution
	Voltage	0 to 10 V	0 to 16000	625 V	
		0 to 5 V	0 to 16000	312.5 H V	
		1 to 5 V	0 to 16000	250 V	
		-10 to +10 V	-8000 to +8000	$1250 \mu \mathrm{~V}$	
	Current	0 to 20 mA	0 to 16000	$1.25 \mu \mathrm{~A}$	
		4 to 20 mA	0 to 16000	$1 \mu \mathrm{~A}$	
Accuracy (Accuracy in respect to full-scale analog output value)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: within $\pm 0.1 \%$ (Voltage $\pm 20 \mathrm{mV}$, Current $\pm 20 \mu \mathrm{~A}$) Ambient temperature -20 to $55^{\circ} \mathrm{C}^{* 2}$: within $\pm 0.2 \%$ (Voltage $\pm 40 \mathrm{mV}$, Current $\pm 40 \mu \mathrm{~A}$)				
Conversion speed	FX5S CPU module: Maximum $1100 \mu \mathrm{~s}$ (The data will be updated at every scan time of the PLC.) FX5UJ/FX5U/FX5UC CPU module: Maximum $950 \mu \mathrm{~s}$ (The data will be updated at every scan time of the PLC.)				
Isolation method	Between output terminal and PLC: Photocoupler Between output terminal channels: Non-isolation				
Power supply	24 V DC $+20 \%,-15 \% 160 \mathrm{~mA}$ (external power supply) $5 \mathrm{VDC}, 10 \mathrm{~mA}$ (internal power supply)*3				
Compatible CPU module	FX5S, FX5UJ, FX5U, FX5UC				
Number of occupied input/output points	0 points (no occupied points)				

*1: For details on the output conversion characteristic, refer to manuals of each product.
*2: The ambient temperature specification is 0 to $55^{\circ} \mathrm{C}$ for products manufactured earlier than June 2016.
$* 3$: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.

Expansion board

liem	Speciications			
	FX5-232-BD	FX5-485-BD	FX5-422-BD-GOT	FX5-SDCD
Transmission standards	Conforming to RS-232C	Conforming to RS-485, RS-422	Conforming to RS-422	-
Maximum transmission distance	15 m	50 m	According to the specification of the GOT	-
External device connection method	9-pin D-sub, male	European-type terminal block	8 -pin MINI-DIN, female	-
Insulation	Non-isolation (between communication line and CPU)	Non-isolation (between communication line and CPU)	Non-isolation (between communication line and CPU)	-
Communication method	Half-duplex bidirectional/full duplex bidirectiona\|*1	Half-duplex bidirectional/full duplex bidirectiona\|*1	Half-duplex bidirectional	-
Protocol type	MELSOFT connection, MC protocol (1C/3C/4C frame), non-protocol communication, MODBUS RTU communication, predefined protocol support	MELSOFT connection, MC protocol (1C/3C/4C frame), nonprotocol communication, MODBUS RTU communication, inverter communication, N:N network, parallel link, predefined protocol support	-	-
Baud rate	300/600//1200/2400/4800/9600/ 19200/38400/57600/115200 (bps)*	300/600/1200/2400/4800/9600/ 19200/38400/57600/115200 (bps)*	9600/19200/38400/57600/115200 (bps)	-
Terminal resistors	-	Built-in (OPEN/110 $/$ /330 Ω)	-	-
SD memory card	-	-	-	NZ1MEM-2GBSD, NZ1MEM-4GBSD, NZ1MEM-8GBSD, NZ1MEM-16GBSD
Power supply	$\begin{array}{\|l\|} \hline 5 \mathrm{VDC}, 20 \mathrm{~mA} \\ \text { (internal power supply) }{ }^{* 2} \\ \hline \end{array}$	5 V DC, 20 mA (internal power supply)*2	5 V DC, 20 mA (internal power supply) ${ }^{* 2 * 3}$	-
Compatible CPU module	FX5S, FX5UJ, FX5U	FX5S, FX5UJ, FX5U	FX5S, FX5UJ, FX5U	FX5S
Number of occupied input/output points	0 points (no occupied points)			

*1: The communication method and baud rate vary depending on the type of communication.
*2: Current consumption calculation is not required for the FX5S/FX5UJ CPU module.
*3: When the GOT 5 V type is connected with this product, the power consumption increases. For the current consumption, refer to the manual of the model to be connected

\diamond Extension power supply module

- FX5-1PSU-5V

Item		Specifications
Rated supply voltage		100 to 240 V AC
Voltage fluctuation range		-15\%, +10\%
Frequency rating		$50 / 60 \mathrm{~Hz}$
Allowable instantaneous power failure time		Operation can be continued upon occurrence of instantaneous power failure for 10 ms or less.
Power fuse		$250 \mathrm{~V}, 3.15$ A time-lag fuse
Rush current		25 A Max. 5 ms or less/100 V AC 50 A Max. 5 ms or less/200 V AC
Power consumption		20 W Max.
Output current* (For power supply to rear stage)	24 V DC	300 mA (Maximum output current depends on the ambient temperature.)
	5 VDC	1200 mA (Maximum output current depends on the ambient temperature.)
Compatible CPU module		FX5UJ, FX5U (AC power supply type)
Number of occupied input/output points		0 points (no occupied points)

*: For details on the current conversion characteristic, refer to manuals of each product.

- FX5-C1PS-5V

Item		Specifications
Supply voltage		24 V DC
Voltage fluctuation range		+20\%, -15\%
Allowable instantaneous power failure time		Operation can be continued upon occurrence of instantaneous power failure for 5 ms or less.
Power fuse		$125 \mathrm{~V}, 3.15$ A time-lag fuse
Rush current		$35 \mathrm{~A} \mathrm{Max}$.0.5 ms or less/24 V DC
Power consumption		30 W Max.
Output current* (For power supply to rear stage)	24 V DC	625 mA (Maximum output current depends on the ambient temperature.)
	5 VDC	1200 mA (Maximum output current depends on the ambient temperature.)
Compatible CPU module		FX5U (DC power supply type), FX5UC
Number of occupied input/output points		0 points (no occupied points)

*: For details on the current conversion characteristic, refer to manuals of each product.
\diamond Bus conversion module

- FX5-CNV-BUS (FX5 (extension cable type) \rightarrow FX3 extension)

Item
Compatible CPU module
Number of occupied input/output points
Control power (supplied from PLC)

FX5U, FX5UC
8 points (Either input or output is available for counting.) 5 V DC 150 mA

- FX5-CNV-BUSC (FX5 (extension connector type) \rightarrow FX3 extension)

Item	Specifications
Compatible CPU module	FX5U, FX5UC
Number of occupied input/output points	8 points (Either input or output is available for counting.)
Control power (supplied from PLC)	5 V DC 150 mA

\checkmark Connector conversion module

- FX5-CNV-IF (FX5 (extension cable type) \rightarrow

FX5 (extension connector type) extension)

Item	Specifications
Compatible CPU module	FX5UJ, FX5U
Number of occupied input/output points	0 points (no occupied points)
Control power (supplied from PLC)	0 mA (no power consumed)

- FX5-CNV-IFC (FX5 (extension connector type) \rightarrow FX5 (extension cable type) extension)

Item	
Compatible CPU module	FX5UC
Number of occupied input/output points	O points (no occupied points)
Control power (supplied from PLC)	0 mA (no power consumed)

Intelligent function module

- FX5-4AD

Items		Specifications		
Analog input points		4 points (4 channels)		
External device connection method		Spring clamp terminal block		
Analog input voltage		-10 to +10 V DC (Input resistance $400 \mathrm{k} \Omega$ or more)		
Analog input current		-20 to +20 mA DC (Input resistance 250)		
Absolute maximum input		Voltage: $\pm 15 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$		
Input characteristics, resolution*1	Voltage	Analog input range	Digital output value	Resolution
		0 to 10 V	0 to 32000	$312.5 \mu \mathrm{~V}$
		0 to 5 V	0 to 32000	156.25 ¢ V
		1 to 5 V	0 to 32000	$125 \mu \mathrm{~V}$
		-10 to +10 V	-32000 to +32000	$312.5 \mu \mathrm{~V}$
		User range setting	-32000 to +32000	$125 \mu \mathrm{~V}^{* 2}$
	Current	0 to 20 mA	0 to 32000	625 nA
		4 to 20 mA	0 to 32000	500 nA
		-20 to +20 mA	-32000 to +32000	625 nA
		User range setting	-32000 to +32000	500 nA*2
Digital output value	Voltage/ Current	16-bit signed binary (-32	+32767)	
Accuracy (accuracy for the full scale digital output value)	Voltage/ Current	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: within $\pm 0.1 \%$ (± 64 digits*3)		
		Ambient temperature 0 to $55^{\circ} \mathrm{C}$: within $\pm 0.2 \%$ (± 128 digits*3)		
		Ambient temperature -20 to $0^{\circ} \mathrm{C}$: within $\pm 0.3 \%$ (± 192 digits ${ }^{* 3}$)		
Conversion speed		$80 \mu \mathrm{~s} / \mathrm{ch}$		
Isolation method		Between input terminal and PLC: Photocoupler Between input terminal channels: Non-isolation		
Power supply		$24 \mathrm{VDC}, 40 \mathrm{~mA}$ (internal power supply) $5 \mathrm{VDC}, 100 \mathrm{~mA}$ (internal power supply)		
Compatible CPU module		FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).		
Number of occupied l/O points		8 points (Either input or output is available for counting.)		

*1: For details on the input conversion characteristics, refer to the manual.
*2: Maximum resolution in the user range setting
*3: Digit refers to digital values.

- FX5-4DA

*1: For details on the output conversion characteristics, refer to the manual.
*2: Maximum resolution in the user range setting

General，Power Supply，Input／Output Specifications
－FX5－8AD

Item		Specifications				
Analog input points		8 points（8 channels）				
External device connection method		Spring clamp terminal block				
Analog input voltage		-10 to＋10 V DC（input resistance 1 M ）				
Analog input current		-20 to $+20 \mathrm{~mA} \mathrm{DC} \mathrm{(input} \mathrm{resistance} 250 \Omega$ ）				
Absolute maximum input		Voltage：$\pm 15 \mathrm{~V}$ ，Current：$\pm 30 \mathrm{~mA}$				
Input characteristics， resolution＊1	Thermocouple	K，J，T： $0.1^{\circ} \mathrm{C}$（ 0.1 to $0.2^{\circ} \mathrm{F}$ ） $\mathrm{B}, \mathrm{R}, \mathrm{S}: 0.1$ to $0.3^{\circ} \mathrm{C}\left(0.1\right.$ to $\left.0.6^{\circ} \mathrm{F}\right)$				
	Resistance temperature detector	$0.1^{\circ} \mathrm{C}\left(0.2^{\circ} \mathrm{F}\right)$				
	Voltage	Analog input range	Digital output value		Resolution	
		0 to 10 V	0 to 32000		$312.5 \mu \mathrm{~V}$	
		0 to 5 V	0 to 32000		$156.25 \mu \mathrm{~V}$	
		1 to 5 V	0 to 32000		$125 \mu \mathrm{~V}$	
		－10 to＋10 V	－32000 to＋32000		$312.5 \mu \mathrm{~V}$	
	Current	0 to 20 mA	0 to 32000		625 nA	
		4 to 20 mA	0 to 32000		500 nA	
		－20 to＋20 mA	-32000 to +32000		625 nA	
Digital output value （16－bit signed binary value）	Thermocouple	K：-2000 to $+12000(-3280$ to +21920$)$ J：-400 to $+7500(-400$ to +13820$)$ T：-2000 to $+3500(-3280$ to +6620$)$ B： 6000 to 17000 （ 11120 to 30920 ） R： 0 to 16000 （ 320 to 29120） S： 0 to 16000 （ 320 to 29120）				
	Resistance temperature detector	Pt100：－2000 to +8500 （ -3280 to +15620 ） Ni100：－600 to $+2500(-760$ to +4820$)$				
	Voltage／ Current	16－bit signed binary（ -32000 to +32000 ）				
Accuracy＊2	Resistance temperature detector	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	$\begin{array}{ll} \text { Pt100: } & \pm 0.8^{\circ} \mathrm{C} \\ \text { Nit00: } & \pm 0.4^{\circ} \mathrm{C} \end{array}$			
	Thermocouple	Ambient temperature－20 to $55^{\circ} \mathrm{C}$	$\begin{array}{ll} \text { Pt100: } & \pm 2.4^{\circ} \mathrm{C} \\ \text { Ni100: } & \pm 1.2^{\circ} \mathrm{C} \\ \hline \end{array}$			
		Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	K：$\pm 3.5^{\circ} \mathrm{C}\left(-200\right.$ to $\left.-150^{\circ} \mathrm{C}\right)$ K：$\pm 2.5^{\circ} \mathrm{C}\left(-150\right.$ to $\left.-100^{\circ} \mathrm{C}\right)$ K：$\pm 1.5^{\circ} \mathrm{C}\left(-100\right.$ to $\left.1200^{\circ} \mathrm{C}\right)$ J：$\pm 1.2^{\circ} \mathrm{C}$ T：$\pm 3.5^{\circ} \mathrm{C}\left(-200\right.$ to $\left.-150^{\circ} \mathrm{C}\right)$ T：$\pm 2.5^{\circ} \mathrm{C}\left(-150\right.$ to $\left.-100^{\circ} \mathrm{C}\right)$ T：$\pm 1.5^{\circ} \mathrm{C}\left(-100\right.$ to $\left.350^{\circ} \mathrm{C}\right)$ B：$\pm 2.3^{\circ} \mathrm{C}$ R：$\pm 2.5^{\circ} \mathrm{C}$ S：$\pm 2.5^{\circ} \mathrm{C}$			
		Ambient temperature－20 to $55^{\circ} \mathrm{C}$	K：$\pm 8.5^{\circ} \mathrm{C}\left(-200\right.$ to $\left.-150^{\circ} \mathrm{C}\right)$ K：$\pm 7.5^{\circ} \mathrm{C}\left(-150\right.$ to $\left.-100^{\circ} \mathrm{C}\right)$ K：$\pm 6.5^{\circ} \mathrm{C}\left(-100\right.$ to $\left.1200^{\circ} \mathrm{C}\right)$ J：$\pm 3.5^{\circ} \mathrm{C}$ T：$\pm 5.2^{\circ} \mathrm{C}\left(-200\right.$ to $\left.-150^{\circ} \mathrm{C}\right)$ T：$\pm 4.2^{\circ} \mathrm{C}\left(-150\right.$ to $\left.-100^{\circ} \mathrm{C}\right)$ T：$\pm 3.1^{\circ} \mathrm{C}\left(-100\right.$ to $\left.350^{\circ} \mathrm{C}\right)$ B：$\pm 6.5^{\circ} \mathrm{C}$ R：$\pm 6.5^{\circ} \mathrm{C}$ S：$\pm 6.5^{\circ} \mathrm{C}$			
	Voltage／ Current＊3	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	Within $\pm 0.3 \%$（ ± 192 digits＊4）			
		Ambient temperature－20 to $55^{\circ} \mathrm{C}$	Within $\pm 0.5 \%$（ ± 320 digits $\left.{ }^{* 4}\right)$			
Conversion speed	Voltage／ Current	$1 \mathrm{~ms} / \mathrm{ch}$				
	Thermocouple／ Resistance temperature detector	$40 \mathrm{~ms} / \mathrm{ch}$				
Isolation method		Between input terminal and PLC：Photocoupler Between input terminal channels：Non－isolation				
Power supply		$24 \mathrm{VDC}, 40 \mathrm{~mA}$（internal power supply） 24 V DC $+20 \%,-15 \% 100 \mathrm{~mA}$（external power supply）				
Compatible CPU module		FX5UJ：Compatible from initial product FX5U，FX5UC：Ver． 1.050 or later Connection with FX5UC CPU module requires connector conversion module（FX5－CNV－IFC）or extension power supply module（FX5－C1PS－5V）．				
Number of occupied I／O points		8 points（Either input or output is available for counting．）				

＊1：For details on the input conversion characteristics，refer to the manual．
＊2：To stabilize the accuracy，warm－up（supply power）the system for 30 minutes or more after power－on．
＊3：Accuracy for the full scale digital output value．
＊4：Digit refers to digital values．

- FX5-4LC

*: To stabilize the accuracy, warm-up (supply power) the system for 30 minutes or more after power-on.

Item	Specifications	
	FX5-20PG-P	FX5-20PG-D
Number of control axes	2 axes	
Command Speed	200 kpps	5 Mpps
Pulse Output	```Output signal: PULSE/SIGN mode, CW/CCW mode, phase A/B (4 multiplication), phase A/B (1 multiplication) Output terminal: Transistor 5 to 24 V DC 50 mA or less```	Output signal: PULSE/SIGN mode, CW/CCW mode, phase A/B (4 multiplication), phase A/B (1 multiplication) Output terminal: Differential driver equivalent to AM26C31
External I/O specifications	Input: READY/STOP/FLS/RLS/PG024/DOG/CHG terminals: 24 V DC 5 mA, PULSER A/PULSER B terminals: 5 V DC 14 mA Zero point signal PG05 terminal: 5 V DC 5 mA Output: CLEAR (deviation counter): 5 to 24 V DC 100 mA or less Circuit insulation: Photocoupler	
Power supply	$24 \mathrm{~V} \mathrm{DC}+20 \%$, -15\% 120 mA (external power supply)	24 V DC +20\%, -15\% 165 mA (external power supply)
Compatible CPU module	FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).	
Number of occupied I/O points	8 points (Either input or output is available for counting.)	

General, Power Supply, Input/Output Specifications

- FX5-ENET

Items					Specifications	
CC-Link IE Field Network Basic	Station type				Master station	
	Maximum number of connectable stations**				32	
	Number of stations occupied by a remote station				1 to 4	
	Maximum number of link points per network			RX	2048 points	
				RY	2048 points	
				RWr	1024 points	
				RWw	1024 points	
	Maximum number of link points per station		Master station	RX	2048 points	
			RY	2048 points		
			RWr	1024 points		
			RWw	1024 points		
			Remote station*2	RX	64/128/192/256 points	
			RY	64/128/192/256 points		
			RWr	32/64/96/128 points		
			RWw	32/64/96/128 points		
	UDP port number used in the cyclic transmission				61450	
	UDP port number used in automatic detection of connected devices				Master station: An unused port number is assigned automatically. Remote station: 61451	
	Transmission specifications	Data transfer speed			100 Mbps	
		Maximum station-to-station distance			100 m	
		Overall cable distance			Depends on the system configuration	
		Number of cascade connections		100BASE-TX		When using a switching hub, check the number of cascaded stages with the manufacturer of the hub to be used.
	Network topology				Line topology, star topology (Coexistence of line topology and star topology is also possible.)	
	Hub*3				Hubs with 100BASE-TX ports*4 can be used.	
	Connection cable*5			100BASE-TX		Ethernet cable of category 5 or higher (STP cable)
General-purpose Ethernet communication	Transmission specifications	Data transfer speed			100/10 Mbps	
		Communication mode			Full-duplex or half-duplex*3	
		Transmission method			Base band	
		Interface			RJ45 connector	
		Maximum segment length (Maximum distance between hub and node)			100 m*	
		Number of cascade connections		100BASE-TX		2 levels maximum*7
			10BASE-T		4 levels maximum*7	
	Protocol type* ${ }^{* 8}$				MELSOFT connection, SLMP server (3E/1E frame), Socket communication, simple CPU communication, BACnet/IP	
	Number of connections				Total of 32 connections*9 (Up to 32 external devices can access one FX5-ENET module at the same time.)	
	Hub*3				Hubs with 100BASE-TX or 10BASE-T ports* ${ }^{* 10}$ can be used.	
	Connection cable*5		100BASE-TX		Ethernet cable of category 5 or higher (STP cable)	
			10BASE-T		Ethernet cable of category 3 or higher (STP/UTP cable)	
Number of ports					2*11	
Power supply					24 V DC, 110 mA (internal power supply)	
Compatible CPU module					FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.110 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).	
Number of occupied I/O points					8 points (Either input or output is available for counting.)	

*3 : IEEE802.3x flow control is not supported.
*4 : The ports must comply with the IEEE802.3 100BASE-TX standards.
*5 : A straight/cross cable can be used.
*6 : For maximum segment length (length between hubs), consult the manufacturer of the hub used.
*7 : This number applies when a repeater hub is used. When using a switching hub, check the number of cascaded stages with the manufacturer of the hub to be used.
*8 : For a compatible version of each protocol, refer to the following manual.
\rightarrow MELSEC iQ-F FX5-ENET User's Manual
*9 : The first device for MELSOFT connection is not included in the number of connections. (The second and the following devices are included.)
The CC-Link IE field network Basic is not included in the number of connections.

* 10: The ports must comply with the IEEE802.3 100BASE-TX or IEEE802.3 10BASE-T standards.
*11: Since the IP address is shared by two ports, only one address can be set.
- FX5-ENET/IP

Items				Specifications
EtherNet/IP communications	Class 1 communications	Communication format		Standard EtherNet/IP
		Number of connections		32
		Communication data size		1444 bytes (per connection)
		Connection type		Point-to-point, multicast
		RPI (communication cycle)		2 to 60000 ms
		PPS (communication processing performance)		3000 pps (case of 128 bytes)
	Class 3 communications* ${ }^{* 1}$	Communication format		Standard EtherNet/IP
		Number of connections		32*2
		Connection type		Point-to-point
	UCMM communications	Communication format		Standard EtherNet/IP
		Number of connections (number of simultaneous executions)		$32^{* 2}$
		Communication data size		1414 bytes*3 *
		Connection type		Point-to-point
	Transmission specifications	Data transmission speed		100 Mbps
		Communication mode		Full-duplex
		Transmission method		Base band
		Interface		RJ45 connector
		IP version		IPv4 is supported.
		Maximum segment length		100 m (length between hub and node)*4
		Number of cascade connections	100BASE-TX	2 levels maximum*5
	Network topology			Star topology, line pology
	Hub*6			Hubs with 100BASE-TX ports*7 can be used.
	Connection cable*8		100BASE-TX	Ethernet cable of category 5 or higher (STP cable)
General-purpose Ethernet communication	Transmission specifications	Data transfer speed		100/10 Mbps
		Communication mode		Full-duplex or half-duplex*6
		Transmission method		Base band
		Interface		RJ45 connector
		Maximum segment length		100 m (length between hub and node)*4
		Number of cascade connections	100BASE-TX	2 levels maximum*5
			10BASE-T	4 levels maximum*5
	Protocol type*9			MELSOFT connection, SLMP server (3E/1E frame), socket communication, simple CPU communication, BACnet/IP
	Number of connections			Total of 32 connections*10 (Up to 32 external devices can access one FX5-ENET/IP module at the same time.)
	Hub*6			Hubs with 100BASE-TX or 10BASE-T ports*11 can be used.
	Connection cable*8		100BASE-TX	Ethernet cable of category 5 or higher (STP cable)
			10BASE-T	Ethernet cable of category 3 or higher (STP/UTP cable)
Number of ports				2*12
Power supply				24 V DC, 110 mA (internal power supply)
Compatible CPU module				FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.110 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Number of occupied I/O points				8 points (Either input or output is available for counting.)

[^72]*2 : The total number of connections for Class 3 communications and UCMM communications is 32 .
*3 : This size is the maximum size which can be specified to 'Data length' of Class 1 communication input data area of the request command during the client operation
During the sever operation, since the FX5-ENET/IP automatically responds according to the request command received from the client, the maximum size is not prescribed.
*4 : For maximum segment length (length between hubs), consult the manufacturer of the hub used.
*5 : This number applies when a repeater hub is used. When using a switching hub, check the number of cascaded stages with the manufacturer of the hub to be used.
*6 : IEEE802.3x flow control is not supported
*7 : The ports must comply with the IEEE802.3 100BASE-TX standards.
*8 : A straight/cross cable can be used.
*9 : For a compatible version of each protocol, refer to the following manual.
\rightarrow MELSEC iQ-F FX5-ENET User's Manual

* 10: The first device for MELSOFT connection is not included in the number of connections. (The second and the following devices are included.)

The CC-Link IE field network Basic is not included in the number of connections.

* 11: The ports must comply with the IEEE802.3 100BASE-TX or IEEE802.3 10BASE-T standards.
* 12: Since the IP address is shared by two ports, only one address can be set.
- FX5-CCL-MS

* 1: The number of remote I/O points that can be used CPU module varies depending on the number of input/output points of the extension device. For the limit of the number of I/O points, refer to the following manual.
\rightarrow MELSEC iQ-F FX5S/FX5UJ/FX5U/FX5UC User's Manual (Hardware)
* 2: The numbers in parentheses are the points that can be used when the module is an intelligent device station.
* 3: Number of links with FX5U/FX5UC CPU module Ver. 1.100 or later. GX Works3 Ver. 1.047 Z or later required. For details on the number of links with FX5U/FX5UC CPU module earlier $t h a n$ Ver. 1.100, refer to the following manual.
* 4: Not applicable to the FX5UJ CPU module. For details, refer to the following manual
\rightarrow MELSEC iQ-F FX5 User's Manual (CC-Link)
- FX5-CCLIEF

Item		Specifications
Station type		Intelligent device station
Station number		1 to 120 (sets by parameter or program)
Communication speed		1 Gbps
Network topology		Line topology, star topology (coexistence of line topology and star topology is also possible), and ring topology
Maximum station-to-station distance		Max. 100 m (Conforming to ANSI/TIA/EIA-568-B (Category 5e))
Cascade connection		Max. 20 stages
Communication method		Token passing
Maximum number of link points*1	RX	384 points, 48 bytes
	RY	384 points, 48 bytes
	RWr	1024 points, 2048 bytes*2
	RWw	1024 points, 2048 bytes*2
Compatible CPU module		FX5UJ: Compatible from initial product FX5U, FX5UC Ver. 1.030 or later. Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Power supply		$5 \mathrm{~V} \mathrm{DC}, 10 \mathrm{~mA}$ (internal power supply) $24 \mathrm{VDC}, 230 \mathrm{~mA}$ (external power supply)
Number of occupied I/O points		8 points (Either input or output is available for counting.)

* 1: The maximum number of link points that a master station can assign to one FX5-CCLIEF module
*2: 256 points (512 bytes) when the mode of the master station is online (High-Speed Mode).

General, Power Supply, Input/Output Specifications

- FX5-CCLGN-MS

*1: The maximum number of points for all link devices may not be used simultaneously depending on the number of device stations, or the number of points and assignments of the link devices that are set in the "Network Configuration Settings" of the "Basic Settings".
*2: Supported by the FX5-CCLGN-MS Ver. 1.010 or later.
*3: The maximum number of connectable stations (61) includes the master station. When connecting multiple master stations, such as the FX5-CCLGN-M and the FX5-40/80SSC-G, which use device station parameters for the CPU module, the total number of device stations must be less than or equal to the number of device station parameter files that can be saved in the CPU module. For details about the number of device station parameter files that can be saved in the CPU module, refer to the following manual.
\rightarrow MELSEC iQ-F FX5 User's Manual (Application)

- FX5-ASL-M

Item	Specifications
Transmission clock	27.0 kHz
Maximum transmission distance (total extension distance)	200 m*1
Transmission system	DC power supply superimposed total frame/cyclic system
Connection type	Bus type (multi-drop method, T-branch method, tree branch method)
Transmission protocol	Dedicated protocol (AnyWireASLINK)
Error control	Checksum, double check method
Number of connected I/O points	- FX5UJ: Up to 216 points*2 (192 input points maximum/192 output points maximum) - FX5U, FX5UC: Up to 448 points ${ }^{* 2 * 3}$ (256 input points maximum/256 output points maximum)
Number of connected remote modules	Up to 128 modules (the number varies depending on the current consumption of each remote module)
External interface	7-piece spring clamp terminal block push-in type
RAS function	- Transmission line disconnection position detection function - Transmission line short-circuit detection function - Transmission power drop detection function
Transmission line (DP, DN)	- UL-compliant general-purpose 2-wire cable
Power cable (24V, 0 V)	- UL-compliant general-purpose cable - For dedicated flat cables
Memory	Built-in memory EEPROM (rewrite endurance: 100 thousand times)
Compatible CPU module	FX5UJ: Compatible from initial product FX5U, FX5UC: Ver. 1.050 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
Power supply	$5 \mathrm{VDC}, 200 \mathrm{~mA}$ (internal power supply) 24 V DC $+15 \%,-10 \% 100 \mathrm{~mA}$ (external power supply)
Number of occupied I/O points	8 (Either input or output is available for counting.)

*1: For the remote module in which the transmission line (DP, DN) and module body are integrated, the length of the transmission line (DP, DN) is also included in the total extension. When laying a 4 -wire (DP, DN, $24 \mathrm{~V}, 0 \mathrm{~V}$) line for fifty meters or more, insert a power line noise filter between the power supply and the line.
For details, refer to the manual of ASLINK filter (ANF-01) made by Anywire Corporation.
*2: The number of remote I/O points that can be used CPU module varies depending on the number of input/output points of the extension device.
For the limit of the number of I/O points, refer to the following manual.
\rightarrow MELSEC iQ-F FX5S/FX5UJ/FX5U/FX5UC User's Manual (Hardware)
*3: Supported by FX5U/FX5UC CPU module Ver. 1.100 or later and by GX Works3 Ver. 1.047 Z or later.

General, Power Supply, Input/Output Specifications

- FX5-DP-M

*1: Transmission speed accuracy is within $\pm 0.2 \%$ (compliant with IEC61158-2).
*2: For details on the transmission distance, refer to the manual.
*3: For details on the PROFIBUS-DP network configuration, refer to the manual.
- FX5-OPC

1: IEEE802.3x flow control is not supported.
2: For maximum segment length (length between hubs), consult the manufacturer of the hub used.
3: This number applies when a repeater hub is used. When using a switching hub, check the number of cascaded stages with the manufacturer of the hub to be used.
4: The ports must comply with the IEEE802.3 100BASE-TX or IEEE802.3 10BASE-T standards.
5: A straight/cross cable can be used.

Simple motion module

- FX5-40SSC-S
- FX5-80SSC-S

Control specification

Item			Specifications	
			FX5-40SSC-S	FX5-80SSC-S
Number of control axes (Virtual servo amplifier axis included)			Max. 4 axes	Max. 8 axes
Operation cycle (Operation cycle settings) [ms]			0.888/1.777	
Interpolation function			Linear interpolation (up to 4-axis, 2-axis circular interpolation)	
Control system			PTP (Point To Point) control, Trajectory control (both linear and arc), Speed control, Speed-position switching control, Position-speed switching control, Speedtorque control	
Acceleration/deceleration process			Trapezoidal acceleration/deceleration, S-curve acceleration/deceleration	
Compensation function			Backlash compensation, Electronic gear, Near pass function	
Synchronous control		Input axis	Servo input axis, synchronous encoder axis, command generation axis	
		Output axis	Cam shaft	
Cam control		Number of registered cams*1	Up to 64 cams	Up to 128 cams
		Cam data format	Stroke ratio data format, coordinate data format	
		Automatic generation of cam	Automatic generation of cam for rotary cutter	
Control unit			mm, inch, degree, pulse	
Number of positioning data			600 data (positioning data No. 1 to 600)/axis (Can be set with MELSOFT GX Works3 or a sequence program.)	
Backup			Parameters, positioning data, and block start data can be saved on flash ROM (battery-less backup)	
Home position return	Home position return method		Proximity dog method, Count method 1, Count method 2, Data set method, Scale home position signal detection method, Driver home position return method	
	Fast home position return control		Provided	
	Auxiliary functions		Home position return retry, Home position shift	
Positioning control	Linear control		Linear interpolation control (Up to 4 axes) ${ }^{* 2}$ (Vector speed, Reference axis speed)	
	Fixed-pitch feed control		Fixed-pitch feed control (Up to 4 axes)	
	2-axis circular interpolation		Auxiliary point-specified circular interpolation, Central point-specified circular interpolation	
	Spe	control	Speed control (Up to 4 axes)	
	Speed-position switching control		INC mode, ABS mode	
	Position-speed switching control		INC mode	
	Current value change		Positioning data, Start No. for a current value changing	
	NOP instruction		Provided	
	JUMP instruction		Unconditional JUMP, Conditional JUMP	
	LOOP, LEND		Provided	
	High-level positioning control		Block start, Condition start, Wait start, Simultaneous start, Repeated start	
Manual control	JOG operation		Provided	
	Inching operation		Provided	
	Manual pulse generator		Possible to connect 1 module (Incremental), Unit magnification (1 to 10000 times)	

Item		Specifications	
		FX5-40SSC-S	FX5-80SsC-S
Expansion control	Speed-torque control	Speed control without positioning loops, Torque control, Tightening \& press-fit control	
Absolute position system		Provided	
Synchronous encoder interface		Up to 4 channels (Total of the internal interface, via PLC CPU interface, and servo amplifier interface)	
	Internal interface	1 ch (Incremental)	
Functions that limit control	Speed limit function	Speed limit value, JOG speed limit value	
	Torque limit function	Torque limit value same setting, torque limit value individual setting	
	Forced stop	Valid/Invalid setting	
	Software stroke limit function	Movable range check with current feed value, movable range check with machine feed value	
	Hardware stroke limit function	Provided	
Functions that change control details	Speed change function	Provided	
	Override function	1 to 300 [\%]	
	Acceleration/deceleration time change function	Provided	
	Torque change function	Provided	
	Target position change function	Target position address and speed are changeable	
Other functions	M-code output function	Provided	
	Step function	Deceleration unit step, Data No. unit step	
	Skip function	Via PLC CPU, Via external command signal	
	Teaching function	Provided	
Parameter initialization function		Provided	
External input signal setting function		Via CPU, Via servo amplifier	
Amplifier-less operation function		Provided	
Mark detection function		Continuous Detection mode, Specified Number of Detections mode, Ring Buffer mode	
	Mark detection signal	Up to 4 points	
	Mark detection setting	16 settings	
Optional data monitor function		Up to 4 points/axis	
Driver communication function		Provided	
SSCNET connect/disconnect function		Provided	
Digital oscilloscope function*3	Bit data	16 ch	
	Word data	16 ch	

*1: The number of registered cams varies depending on the memory capacity, cam resolution, and the number of coordinates.
*2: 4-axis linear interpolation control is enabled only at the reference axis speed.
*3: 8 ch word data and 8 ch bit data can be displayed in real time.

241

Item		Specifications	
		FX5-40SSC-S	FX5-80SSC-S
Number of control axes		Max. 4 axes	Max. 8 axes
Servo amplifier connection method		SSCNET III/H	
Maximum overall cable distance [m]		400	800
Maximum distance between stations [m]		100	
Peripheral I/F		Via CPU module (Ethernet)	
Manual pulse generator operation function		Possible to connect 1 module	
Synchronous encoder operation function		Possible to connect 4 modules (Total of the internal interface, via PLC CPU interface, and servo amplifier interface)	
Input signals (DI)	No. of input points	4 points	
	Input method	Positive common/Negative common shared (Photocoupler)	
	Rated input voltage/ current	24 V DC/Approx. 5 mA	
	Operating voltage range	19.2 to 26.4 V DC (24 V DC +10\%/-20\%, ripple ratio 5\% or less)	
	ON voltage/current	17.5 V DC or more/3.5 mA or more	
	OFF voltage/current	7 V DC or less/1.0 mA or less	
	Input resistance	Approx. $6.8 \mathrm{k} \Omega$	
	Response time	1 ms or less (OFF \rightarrow ON, ON \rightarrow OFF)	
	Recommended wire size	AWG24 (0.2 mm²)	
Forced stop input signal (EMI)	No. of input points	1 point	
	Input method	Positive common/Negative common shared (Photocoupler)	
	Rated input voltage/ current	24 V DC/Approx. 5 mA	
	Operating voltage range	$\begin{aligned} & 19.2 \text { to } 26.4 \mathrm{~V} \text { DC (} 24 \mathrm{~V} \text { DC }+10 \% /-20 \% \text {, ripple ratio } 5 \% \\ & \text { or less) } \end{aligned}$	
	ON voltage/current	17.5 V DC or more/3.5 mA or more	
	OFF voltage/current	7 V DC or less $/ 1.0 \mathrm{~mA}$ or less	
	Input resistance	Approx. $6.8 \mathrm{k} \Omega$	
	Response time	4 ms or less (OFF \rightarrow ON, ON \rightarrow OFF)	
	Recommended wire size	AWG24 (0.2 mm²)	

Item			Specifications	
			FX5-40SSC-S	FX5-80SSC-S
	Signal input form		Phase A/Phase B (magnification by 4/magnification by 2/magnification by 1), PULSE/SIGN	
	Differential output type (26LS31 or equivalent)	Input pulse frequency	Max. 1 Mpulse/s (After magnification by 4, up to 4 Mpulse/s)	
		Pulse width	1μ s or more	
		Leading edge/ trailing edge time	0.25μ s or less	
		Phase difference	0.25μ s or more	
		Rated input voltage	5.5 V DC or less	
		High/Low-voltage	2.0 to 5.25 V DC/0 to 0.8 V DC	
		Differential voltage	$\pm 0.2 \mathrm{~V}$	
		Cable length	Up to 30 m	
	Voltageoutput/ Opencollector type (5 V DC)	Input pulse frequency	Max. 200 kpulse/s (After magnification by 4, up to $800 \mathrm{kpulse} / \mathrm{s}$)	
		Pulse width	$5 \mu \mathrm{~s}$ or more	
		Leading edge/ trailing edge time	1.2μ s or less	
		Phase difference	$1.2 \mu \mathrm{~s}$ or more	
		Rated input voltage	5.5 V DC or less	
		High/Low-voltage	3.0 to 5.25 V DC/2 mA or less, 0 to $1.0 \mathrm{VDC} / 5 \mathrm{~mA}$ or more	
		Cable length	Up to 10 m	
	Compatible CPU module		FX5UJ, FX5U, FX5UC: Compatible from initial product Only 1 module may be connected per system. Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).	
	Number of occupied input/ output points		8 points (Either input or output is available for counting.)	
	Power supply		24 V DC +20\%/-15\% (external power supply)	

\diamond Motion module

- FX5-40SSC-G
- FX5-80SSC-G

Control specification

Item		Specifications	
		FX5-40SSC-G	FX5-80SSC-G
Number of control axes (Virtual servo amplifier axis included)		Max. 4 axes	Max. 8 axes
Operation cycle (Operation cycle settings) [ms]		0.500/1.000/2.000/4.000	
Interpolation function		Linear interpolation (up to 4-axis, 2-axis circular interpolation)	
Control system		PTP (Point To Point) control, Trajectory control (both linear and arc), Speed control, Speed-position switching control, Position-speed switching control, Speedtorque control	
Acceleration/deceleration process		Trapezoidal acceleration/deceleration, S-curve acceleration/deceleration	
Compensation function		Backlash compensation, Electronic gear, Near pass function	
Synchronous control		Synchronous encoder input, command generation axis, cam, phase compensation, cam auto-generation	
Cam control	Number of registered cams*1	Up to 128 cams	
	Cam data format	Stroke ratio data format, coordinate data format	
	Automatic generation of cam	Automatic generation of cam for rotary cutter	
Control unit		mm, inch, degree, pulse	
Number of positioning data		600 data (positioning data No. 1 to 600)/axis (Can be set with MELSOFT GX Works3 or a sequence program.)	
Backup		Parameters, positioning data, and block start data can be saved on flash ROM (battery-less backup)	
Home position return		Driver home position return method	
Positioning control	Linear control	Linear interpolation control (Up to 4 axes)*2 (Vector speed, Reference axis speed)	
	Fixed-pitch feed control	Fixed-pitch feed control (Up to 4 axes)	
	2-axis circular interpolation	Auxiliary point-specified circular interpolation, Central point-specified circular interpolation	
	Speed control	Speed control (Up to 4 axes)	
	Speed-position switching control	INC mode, ABS mode	
	Position-speed switching control	INC mode	
	Current value change	Positioning data, Start No. for a current value changing	
	NOP instruction	Provided	
	JUMP instruction	Unconditional JUMP, Conditional JUMP	
	LOOP, LEND	Provided	
	High-level positioning control	Block start, Condition start, Wait start, Simultaneous start, Repeated start	
Manual control	JOG operation	Provided	
	Inching operation	Provided	
	Manual pulse generator	Possible to connect 1 module (Incremental), Unit magnification (1 to 10000 times)	
Expansion control	Speed-torque control	Speed control without Tightening \& press-fit	ioning loops, Torque control, ol
Absolute position system		Made compatible by setting a battery to servo amplifier	
Synchronous encoder interface		Up to 4 channels (Total of the, via PLC CPU interface, and servo amplifier interface)	
Functions that limit control	Speed limit function	Speed limit value, JOG speed limit value	
	Torque limit function	Torque limit value same setting, torque limit value individual setting	
	Forced stop	Via buffer memory, Valid/Invalid setting	
	Software stroke limit function	Movable range check with current feed value, movable range check with machine feed value	
	Hardware stroke limit function	Provided	
Functions that change control details	Speed change function	Provided	
	Override function	1 to 300 [\%]	
	Acceleration/deceleration time change function	Provided	
	Torque change function	Provided	
	Target position change function	Target position address and speed are changeable	
Other functions	M-code output function	Provided	
	Step function	Deceleration unit step, Data No. unit step	
	Skip function	Via PLC CPU, Via external command signal	
	Teaching function	Provided	
Parameter initialization function		Provided	
External input signal setting function		Via CPU, Via servo amplifier	

Item		Specifications	
		FX5-40SSC-G	FX5-80SSC-G
Mark detection function		Continuous Detection mode, Specified Number of Detections mode, Ring Buffer mode	
	Mark detection signal	Signals for the number of axes of the connected servo amplifiers	
	Mark detection setting	16 settings	
Optional data monitor function		Up to 4 points/axis	
Event history function		Provided	
Servo transient transmission function		Provided	
Digital oscilloscope function*3	Bit data	16 ch	
	Word data	16 ch	

*1: The number of registered cams varies depending on the memory capacity, cam resolution, and the number of coordinates.
*2: 4-axis linear interpolation control is enabled only at the reference axis speed.
*3: 8 ch word data and 8 ch bit data can be displayed in real time.

Module specification

Item		Speciications	
		FX5-40SSC-G	FX5-80SSC-G
Communication speed		1 Gbps	
Maximum number of connectable stations per network		Motion control stations: 4 Standard stations: 16	Motion control stations: 8 Standard stations: 16
Communication cable		Ethernet cable (Category 5e or higher, straight cable (doubleshielded, STP))	
Maximum station-to-station distance		100 m	
Maximum number of networks		239	
Network topology*		Line topology, star topology (Coexistence of line topology and star topology is also possible.)	
Communication method			
Transient transmission capacity		1920 bytes	
Maximum number of link points per network	RX/RY	8192 points, 1K bytes (When used as a master station)	
	RWr/RWw	1024 points, 2K bytes (When used as a master station)	
Maximum number of link points per station	RX/RY	8192 points, 1K bytes (When used as a master station)	
	RWr/RWw	1024 points, 2K bytes (When used as a master station)	
Compatible CPU module		FX5U, FX5UC: Ver. 1.230 or later Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).	
Number of occupied input/ output points		8 points (Either input or output is available for counting.)	
Power supply		$24 \mathrm{VDC}+20 \% /-15 \%$ (external power supply)	

*: Use a switching hub (certified class: B) for star topology.

External Dimensions

CPU module

External color: Main body, Munsell 0.6B7.6/0.2

Model	W: mm	Wi: mm Mounting hole pitches	MASS (Weight): kg
FX5S-30M \square	100	81	Approx. 0.45
FX5S-40M \square	130	111	Approx. 0.55
FX5S-60M \square	175	156	Approx. 0.65

External color: Main body, Munsell 0.6B7.6/0.2

Model	W: mm	Wi: mm Mounting hole pitches	MASS (Weight): kg
FX5UJ-24M \square	95	76	Approx. 0.55
FX5UJ-40M \square	130	111	Approx. 0.65
FX5UJ-60M \square	175	156	Approx. 0.80

- External color: Main body, Munsell $0.6 \mathrm{BB} .6 / 0.2$
- External color: Main body, Munsell 0.6B7.6/0.2

Model	W: mm	Wi: mm Mounting hole pitches	MASS (Weight): kg
FX5U-32MR/ES, FX5U-32MT/ES, FX5U-32MT/ESS FX5U-32MR/DS, FX5U-32MT/DS, FX5U-32MT/DSS	150	123	Approx. 0.7
FX5U-64MR/ES, FX5U-64MT/ES, FX5U-64MT/ESS FX5U-64MR/DS, FX5U-64MT/DS, FX5U-64MT/DSS	220	193	Approx. 1.0
FX5U-80MR/ES, FX5U-80MT/ES, FX5U-80MT/ESS FX5U-80MR/DS, FX5U-80MT/DS, FX5U-80MT/DSS	285	258	Approx. 1.2

- Accessories: FX2NC-100MPCB type power cable

Model	W: mm	MASS Weight): kg
FX5UC-32MT/D, FX5UC-32MT/DSS	42.1	Approx. 0.2
FX5UC-64MT/D, FX5UC-64MT/DSS	62.2	Approx. 0.3
FX5UC-96MT/D, FX5UC-96MT/DSS	82.3	Approx. 0.35

External color: Main body, Munsell 0.6B7.6/0.2

- Accessories: FX2NC-100MPCB type power cable

Model	W: mm	MASS Meight): $k g$
FX5UC-32MT/DS-TS, FX5UC-32MT/DSS-TS	48.1	Approx. 0.25
FX5UC-32MR/DS-TS	68.2	Approx. 0.35

Safety extension module

Safety main module

External color: Munsell 0.6B7.6/0.2

Model	MASS (Weight): kg
FX5-SF-MU4T5	Approx. 0.3

Safety input expansion module

External color: Munsell 0.6B7.6/0.2

FX5-SF-8DI4 Model	MASS (Weight): kg
	Approx. 0.25

External Dimensions

I/O module

Input module/output module (extension cable type), high-speed pulse input/output module

External color: Munsell 0.6B7.6/0.2

Model	MASS (Weight): kg
FX5-8EX/ES, FX5-8EYR/ES, FX5-8EYT/ES,	Approx. 0.2
FX5-8EYT/ESS	
FX5-16EX/ES, FX5-16EYR/ES, FX5-16EYT/ES,	
FX5-16EYT/ESS, FX5-16ER/ES, FX5-16ET/ES,	Approx. 0.25
FX5-16ET/ESS, FX5-16ET/ES-H, FX5-16ET/ESS-H	

Powered input/output module

External color: Munsell 0.6B7.6/0.2
Accessories: Extension cable

Model	MASS (Weight): kg
FX5-32ER/ES, FX5-32ET/ES, FX5-32ET/ESS	Approx. 0.65
FX5-32ER/DS, FX5-32ET/DS, FX5-32ET/DSS	

Input module/output module (extension connector type)

External color: Munsell 0.6B7.6/0.2

Model	W: mm	MASS (Weight): kg
FX5-C16EX/D, FX5-C16EX/DS FX5-C16EYT/D, FX5-C16EYT/DSS	14.6	Approx. 0.1
FX5-C32EX/D, FX5-C32EX/DS FX5-C32EYT/D, FX5-C32EYT/DSS	20.1	Approx. 0.15

Input/output module (extension connector type)

External color: Munsell 0.6B7.6/0.2

Model	MASS (Weight): kg
FX5-C32ET/D, FX5-C32ET/DSS	Approx. 0.15

Input module/output module/Input/output module (Spring clamp terminal block type)

External color: Main body, Munsell 0.6B7.6/0.2

Model	W: mm	MASS (Weight): kg
FX5-C16EYR/D-TS	30.7	Approx. 0.2
FX5-C32EX/DS-TS, FX5-C32EYT/D-TS, FX5-C32EYT/DSS-TS, FX5-C32ET/DS-TS, FX5-C32ET/DSS-TS	20.1	Approx. 0.15

Intelligent function module

FX5-40SSC-S/FX5-80SSC-S FX5-40SSC-G/FX5-80SSC-G

FX5-4AD/FX5-4DA
MASS (Weight): Approx. 0.2 kg
External color: Munsell 0.6 B7.6/0.2

FX5-4LC

External (Weight): Approx. 0.3 kg

FX5-CCL-MS

FX5-CCLGN-MS

MASS (Weight): Approx. 0.3 kg - External color: Munsell $0.6 B 7.6 / 0.2$

FX5-ASL-M

MASS (Weight): Approx. 0.2 kg External color: Munsell 0.6B7.6/0.2

FX5-DP-M

-MASS (Weight): Approx. 0.2 kg - External color: Munsell 0.6B7.6/0.2

FX5-ENET

MASS (Weight): Approx. 0.2 kg External color: Munsell 0.6B7.6/0.2

FX5-ENET/IP

MASS (Weight): Approx. 0.2 kg - External color: Munsell 0.6B7.6/0.2

FX5-OPC

MASS (Weight): Approx. 0.2 kg
External color: Munsell 0.6B7.6/0.2

Expansion adapter

FX5-4A-ADP/FX5-4AD-ADP - MASS (Weight): Approx. 0.1 kg

- External color: Munsell $0.6 \mathrm{~B} 7.6 / 0$

FX5-232ADP/FX5-485ADP

Bus conversion module

FX5-CNV-BUSC

Connector conversion module

- MASS (Weight): Approx. 0.06 kg External color: Munsell 0.6B7.6/0.2
- Accessory: Extension cable

External Dimensions

FX5 extension power supply module

FX3 extension power supply module

FX3U-1PSU-5V

- MASS (Weight): Approx. 0.3 kg

External color: Munsell 0.08GY/7.64/0.81
Accessories: Extension cable

- M3 terminal screw for terminal block
- DIN rail of 35 mm in width can be installed

FX3 intelligent function module

FX3U-4AD/FX3U-4DA
FX3U-64CCL/FX3U-16CCL-M

External color: Munsell 0.08GY/7.64/0.81
Accessories: Special block No. label, dust sheet, and terminating resistor*

- M3 terminal screw for terminal block

DIN rail of 35 mm in width can be installed
*: Attached only to FX3U-16CCL-M

Model	MASS (Weight): kg
FX3U-4AD, FX3U-4DA	Approx. 0.2
FX3U-64CCL, FX3U-16CCL-M	Approx. 0.3

- Mass (Weight): Approx. 0.4 kg

External color: Munsell 0.08GY/7.64/0.81

- External color: Munsel 0.08 GY 7.64 - DIN rail of 35 mm in width can be installed

FX3U-2HC

FX3U-1PG
Mass (Weight): Approx. 0.2 kg External color: Munsell 0.08GY/7.64/0.81 - M3 terminal screw for terminal block - DIN rail of 35 mm in width can be installed

FX3U-128ASL-M

- Mass (Weight): Approx. 0.2 kg External color: Munsell 0.08GY/7.64/0.81

External Dimensions

Terminal block (common to all models)

- External color: Munsell 0.08GY/7.64/0.81

Accessory: Terminal block arrangement card

- M3.5 terminal screw for terminal block
- DIN rail of 35 mm in width can only be installed

Terminal Arrangement

FX5S CPU module
FX5S-30MR/ES, FX5S-30MT/ES

FX5S-30MT/ESS

FX5S-40MR/ES, FX5S-40MT/ES

FX5S-40MT/ESS

FX5S-60MR/ES, FX5S-60MT/ES

FX5S-60MT/ESS

Terminal Arrangement

FX5UJ CPU module

FX5UJ-24MR/ES, FX5UJ-24MT/ES

FX5UJ-24MT/ESS

FX5UJ-40MR/ES, FX5UJ-40MT/ES

FX5UJ-40MT/ESS

FX5UJ-60MR/ES, FX5UJ-60MT/ES

FX5UJ-60MT/ESS

FX5U CPU module

FX5U-32MR/ES, FX5U-32MT/ES

FX5U-32MT/ESS

FX5U-32MR/DS, FX5U-32MT/DS

FX5U-32MT/DSS

FX5U-64MR/ES, FX5U-64MT/ES

FX5U-64MT/ESS

Yo		2	-	Y4		6		Y10		12	-	Y14		16	-	Y20		22	24	26	Y30	32	34	36 +V5	
+V0	1		3	+V1	\| 5		7	+V2	11	13		V3	15	17		V4	21	23	25	27	31	33	35	37	

FX5U-64MR/DS, FX5U-64MT/DS

FX5U-64MT/DSS

Terminal Arrangement

FX5U CPU module
FX5U-80MR/ES, FX5U-80MT/ES

FX5U-80MT/ESS

FX5U-80MR/DS, FX5U-80MT/DS

FX5U-80MT/DSS

FX5UC CPU module

FX5UC-32MT/D

Input	
X 0	X 10
X 1	X 11
X 2	X 12
X 3	X 13
X 4	X 14
X 5	X 15
X 6	X 16
X 7	X 17
COM	COM
•	\cdot
Output	
Y 0	Y 10
Y 1	Y 11
Y 2	Y 12
Y 3	Y 13
Y 4	Y 14
Y 5	Y 15
Y 6	Y 16
Y 7	Y 17
$\mathrm{COM0}$	$\mathrm{COM0} 0$
•	•

FX5UC-32MT/DSS-TS

Input	
X0	X10
X1	X11
X2	X12
X3	X13
X4	X14
X5	X15
X6	X16
X7	X17
S/S	S/S

Output

Y 0	Y 10
Y 1	Y 11
Y 2	Y 12
Y 3	Y 13
Y 4	Y 14
Y 5	Y 15
Y 6	Y 16
Y 7	Y 17
+V 0	Y 0

FX5UC-32MR/DS-TS

Input*		Input*	
X0	X0	X10	X10
X1	X1	X11	X11
X2	X2	X12	X12
X3	X3	X13	X13
X4	X4	X14	X14
X5	X5	X15	X15
X6	X6	X16	X16
X7	X7	X17	X17
S/S0	S/S0	S/S1	S/S1
Output*		Output*	
YO	YO	Y10	Y10
Y1	Y1	Y11	Y11
Y2	Y2	Y12	Y12
Y3	Y3	Y13	Y13
Y4	Y4	Y14	Y14
Y5	Y5	Y15	Y15
Y6	Y6	Y16	Y16
Y7	Y7	Y17	Y17
COMO	COMO	COM1	COM1

FX5UC-64MT/D

Input		Input	
X0	X10	X20	X30
X1	X11	X21	X31
X2	X12	X22	X32
X3	X13	X23	X33
X4	X14	X24	X34
X5	X15	X25	X35
X6	X16	X26	X36
X7	X17	X27	X37
COM	COM	COM	COM
-	-	-	-
Output		Output	
YO	Y10	Y20	Y30
Y1	Y11	Y21	Y31
Y2	Y12	Y22	Y32
Y3	Y13	Y23	Y33
Y4	Y14	Y24	Y34
Y5	Y15	Y25	Y35
Y6	Y16	Y26	Y36
Y7	Y17	Y27	Y37
COMO	COMO	COM1	COM1
-	-		\cdot

FX5UC-64MT/DSS

Input		Input	
X0	X10	X20	X30
X1	X11	X21	X31
X2	X12	X22	X32
X3	X13	X23	X33
X4	X14	X24	X34
X5	X15	X25	X35
X6	X16	X26	X36
X7	X17	X27	X37
COMO	COMO	COM1	COM1
-	-	-	-
Output		Output	
YO	Y10	Y20	Y30
Y1	Y11	Y21	Y31
Y2	Y12	Y22	Y32
Y3	Y13	Y23	Y33
Y4	Y14	Y24	Y34
Y5	Y15	Y25	Y35
Y6	Y16	Y26	Y36
Y7	Y17	Y27	Y37
+V0	+V0	+V1	+V1
-	-	-	-

FX5UC-96MT/D

Input		Input		Input	
X0	X10	X20	X30	X40	X50
X1	X11	X21	X31	X41	X51
X2	X12	X22	X32	X42	X52
X3	X13	X23	X33	X43	X53
X4	X14	X24	X34	X44	X54
X5	X15	X25	X35	X45	X55
X6	X16	X26	X36	X46	X56
X7	X17	X27	X37	X47	X57
COM	COM	COM	COM	COM	COM
-	-	.	-	-	-
Output		Output		Output	
YO	Y10	Y20	Y30	Y40	Y50
Y1	Y11	Y21	Y31	Y41	Y51
Y2	Y12	Y22	Y32	Y42	Y52
Y3	Y13	Y23	Y33	Y43	Y53
Y4	Y14	Y24	Y34	Y44	Y54
Y5	Y15	Y25	Y35	Y45	Y55
Y6	Y16	Y26	Y36	Y46	Y56
Y7	Y17	Y27	Y37	Y47	Y57
COMO	COMO	COM1	COM1	COM2	COM2
-	-	-		-	-

FX5UC-96MT/DSS

Input		Input		Input	
X0	X10	X20	X30	X40	X50
X1	X11	X21	X31	X41	X51
X2	X12	X22	X32	X42	X52
X3	X13	X23	X33	X43	X53
X4	X14	X24	X34	X44	X54
X5	X15	X25	X35	X45	X55
X6	X16	X26	X36	X46	X56
X7	X17	X27	X37	X47	X57
COMO	COMO	COM1	COM1	COM2	COM2
-	-	-	-	-	-
Output		Output		Output	
YO	Y10	Y20	Y30	Y40	Y50
Y1	Y11	Y21	Y31	Y41	Y51
Y2	Y12	Y22	Y32	Y42	Y52
Y3	Y13	Y23	Y33	Y43	Y53
Y4	Y14	Y24	Y34	Y44	Y54
Y5	Y15	Y25	Y35	Y45	Y55
Y6	Y16	Y26	Y36	Y46	Y56
Y7	Y17	Y27	Y37	Y47	Y57
+V0	+V0	+V1	+V1	+V2	+V2
-	.	-	-	.	-

Safety extension module

FX5-SF-8DI4

Left side of terminal arrangement		Right side of terminal arrangement	
Name	Description	Name	Description
10	Safety input 0	T0	Test output 0
I1	Safety input 1	T1	Test output 1
12	Safety input 2	T2	Test output 2
13	Safety input 3	T3	Test output 3
14	Safety input 4	T4	Test output 4
15	Safety input 5	T5	Test output 5
16	Safety input 6	T6	Test output 6
17	Safety input 7	T7	Test output 7
FG	Frame ground	FG	Frame ground

I/O module
Input module/output module (extension cable type)

FX5-16EYR/ES FX5-16EYT/ES

FX5-16EX/ES

FX5-8EYT/ESS

FX5-16ET/ESS

Terminal Arrangement

High-speed pulse input/output module

FX5-16ET/ES-H

FX5-16ET/ESS-H

Powered input/output modules

FX5-32ER/ES, FX5-32ET/ES

FX5-32ET/ESS

FX5-32ER/DS, FX5-32ET/DS

FX5-32ET/DSS

Input module/output module (extension connector type)

FX5-C16EX/D

Input	
$\mathrm{X0}$	X 0
X 1	X 1
X 2	X 2
X 3	X 3
X 4	X 4
X 5	X 5
X 6	X 6
X 7	X 7
COM	COM
\cdot	Notch

FX5-C16EX/DS

Input	
$\mathrm{X0}$	X 0
X 1	X 1
X 2	X 2
X 3	X 3
X 4	X 4
X 5	X 5
X 6	X 6
X 7	X 7
$\mathrm{COM0} 0$	$\mathrm{COM0} 0$
\cdot	\cdot

FX5-C32EX/DS-TS

Input	
X0	X10
X1	X11
X2	X12
X3	X13
X4	X14
X5	X15
X6	X16
X7	X17
S/S	S/S
Input	
X0	X10
X1	X11
X2	X12
X3	X13
X4	X14
X5	X15
X6	X16
X7	X17
S/S	S/S

FX5-C16EYT/D

Output	
Y 0	Y 0
Y 1	Y 1
Y 2	Y 2
Y 3	Y 3
Y 4	Y 4
Y 5	Y 5
Y 6	Y 6
Y 7	Y 7
$\mathrm{COM0} 0$	$\mathrm{COM0} 0$
\cdot	\cdot

FX5-C16EYT/DSS

Output	
Y 0	Y 0
Y 1	Y 1
Y 2	Y 2
Y 3	Y 3
Y 4	Y 4
Y 5	Y 5
Y 6	Y 6
Y 7	Y 7
+V 0	+V 0
\cdot	\cdot

FX5-C16EYR/D-TS

Output	
Y0	Y0
Y 1	Y 1
Y 2	Y 2
Y 3	Y 3
Y 4	Y 4
Y 5	Y 5
Y 6	Y 6
Y 7	Y 7
COM0	COM0
Output	
Y10	Y 10
Y 11	Y 11
Y 12	Y 12
Y 13	Y 13
Y 14	Y 14
Y 15	Y 15
Y 16	Y 16
Y 17	Y 17
COM1	COM1

I/O module (extension connector type)

FX5-C32ET/DS-TS

Input	
$\mathrm{X0}$	X 10
X 1	X 11
X 2	X 12
X 3	X 13
X 4	X 14
X 5	X 15
X 6	X 16
X 7	X 17
S/S	S / S
Output	
Y 0	Y 10
Y 1	Y 11
Y 2	Y 12
Y 3	Y 13
Y 4	Y 14
Y 5	Y 15
Y 6	Y 16
Y 7	Y 17
COM0	COM0

FX5-C32ET/DSS

Input	
X 0	X 0
X 1	X 1
X 2	X 2
X 3	X 3
X 4	X 4
X 5	X 5
X 6	X 6
X 7	X 7
$\mathrm{COM0}$	$\mathrm{COM0}$
\cdot	\cdot
Output	
Y 0	Y 0
Y 1	Y 1
Y 2	Y 2
Y 3	Y 3
Y 4	Y 4
Y 5	Y 5
Y 6	Y 6
Y 7	Y 7
+V 0	+V 0
\cdot	\cdot

FX5-C32ET/DSS-TS

Input	
X 0	X 10
X 1	X 11
X 2	X 12
X 3	X 13
X 4	X 14
X 5	X 15
X 6	X 16
X 7	X 17
$\mathrm{~S} / \mathrm{S}$	S / S
Output	
Y 0	Y 10
Y 1	Y 11
Y 2	Y 12
Y 3	Y 13
Y 4	Y 14
Y 5	Y 15
Y 6	Y 16
Y 7	Y 17
+V 0	+V 0

FX5-4AD

FX5-4DA

FX5-8AD

FX5-4LC

FX5-20PG-D

Axis 2 (AX2)		Axis 1 (AX1)	
Pin No.	Signal name	Pin No.	Signal name
B20	PULSER B-	A20	PULSER B+
B19	PULSER A-	A19	PULSER A+
B18	PULSE R-	A18	PULSE R-
B17	PULSE R+	A17	PULSE R+
B16	PULSE F-	A16	PULSE F-
B15	PULSE F+	A15	PULSE F+
B14	CLRCOM	A14	CLRCOM
B13	CLEAR	A13	CLEAR
B12	RDYCOM	A12	RDYCOM
B11	READY	A11	READY
B10	PG0COM	A10	PG0COM
B9	PG05	A9	PG05
B8	PG024	A8	PG024
B7	COM	A7	COM
B6	COM	A6	COM
B5	CHG	A5	CHG
B4	STOP	A4	STOP
B3	DOG	A3	DOG
B2	RLS	A2	RLS
B1	FLS	A1	FLS

FX5-40SSC-S, FX5-80SSC-S

26	13	Pin No.	Signal name	Pin No.	Signal name
		1	No connect	14	No connect
25	12	2	SG	15	SG
24	11	3	HA	16	HB
23	10	4	HAH	17	HBH
22	9	5	HAL	18	HBL
21	8	6 to 9	No connect	19 to 22	No connect
20	7	10	EMI	23	EMI.COM
19	6	11			D12
18	5	11	D11	24	D12
17	4	12	DI3	25	D14
16	3	13	COM	26	COM

FX5-ENET, FX5-ENET/IP, FX5-OPC

Pin No.	Signal name	Description
1	TP0+	Data 0 transmission/reception (positive side)
2	TP0-	Data 0 transmission/reception (negative side)
3	TP1+	Data 1 transmission/reception (positive side)
4	TP2+	Data 2 transmission/reception (positive side)
5	TP2-	Data 2 transmission/reception (negative side)
6	TP1-	Data 1 transmission/reception (negative side)
7	TP3+	Data 3 transmission/reception (positive side)
8	TP3-	Data 3 transmission/reception (negative side)

FX5-CCL-MS

FX5-CCLIEF, FX5-CCLGN-MS
FX5-40SSC-G, FX5-80SSC-G

Pin No.	Signal name	Description
1	TP0 +	Data 0 transmission/reception (positive side)
2	TP0-	Data 0 transmission/reception (negative side)
3	TP1+	Data 1 transmission/reception (positive side)
4	TP2+	Data 2 transmission/reception (positive side)
5	TP2-	Data 2 transmission/reception (negative side)
6	TP1-	Data 1 transmission/reception (negative side)
7	TP3+	Data 3 transmission/reception (positive side)
8	TP3-	Data 3 transmission/reception (negative side)

FX5-ASL-M

FX5-DP-M

Pin No.	Signal name	Description		
1	NC	Not connected		
2	NC	Not connected		
3	RxD/TxD-P	Receive/send data-P		
4	CNTR-P**	Control signal of repeaters		
5	DGND*2	Data ground		
6	VP*2	Voltage+		
7	NC	Not connected		
8	RxD/TxD-N	Receive/send data-N		
9	NC	Not connected		*1: Optional signal
:---				
*2: Signal used for connecting a bus terminator				

Expansion adapter

Terminal Arrangement

Expansion board

FX5-232-BD

FX5-485-BD

FX5-422-BD-GOT

8-pin MINI-DIN (female)

FX5 extension power supply module

FX5-1PSU-5V

FX5-C1PS-5V
$\stackrel{\square}{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ \square\end{array}\right.}+$

FX3 extension power supply module

FX3U-1PSU-5V

FX3 intelligent function module

FX3U-32DP

	- Assigned O Not assigned	Pin No.	Signal name	Descripion
		3	RXD/TXD-P	Receive/send data-P
		4	RTS	Ready to send
		5	DGND	Data ground
		6	VP	Voltage+
		8	RXD/TXD-N	Receive/send data-N
		1, 2, 7, 9	NC	Not assigned

Type system (CPU module, input/output extension device)

Input signal format

1) When a contactless sensor output is connected to PLC, NPN open collector transistor output via sink input wiring, and PNP open collector transistor output can be handled via source input wiring
2) S / S terminal and 24 V terminal are short-circuited by sink input wiring. (Left side of the drawing below) S / S terminal and 0 V terminal are short-circuited by source input wiring. (Right side of the drawing below)

Output signal format

1) Relay output type is mechanically insulated by a relay, while transistor output type is insulated by a photocoupler. In addition, LED for output indication is driven by internal power supply.
2) Transistor output is made up of NPN open collector output (sink [-common]) system and NPN open collector output (source [+common]) system.

Terminal Arrangement
memo

Products List

CPU module

Model	Specifications					Description page
	Rated voltage		Input		Output	
- FX5S CPU modules						
FX5S-30MR/ES	$\begin{aligned} & 100 \text { to } 240 \text { V AC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	16 points	24 V DC sink/source	14 points	Relay	82
FX5S-30MT/ES					Transistor/sink	82
FX5S-30MT/ESS					Transistor/source	82
FX5S-40MR/ES		24 points		16 points	Relay	82
FX5S-40MT/ES					Transistor/sink	82
FX5S-40MT/ESS					Transistor/source	82
FX5S-60MR/ES		36 points		24 points	Relay	82
FX5S-60MT/ES					Transistor/sink	82
FX5S-60MT/ESS					Transistor/source	82
- FX5UJ CPU modules						
FX5UJ-24MR/ES	$\begin{aligned} & 100 \text { to } 240 \mathrm{~V} \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	14 points	24 V DC sinksource	10 points	Relay	84
FX5UJ-24MT/ES					Transistor/sink	84
FX5UJ-24MT/ESS					Transistor/source	84
FX5UJ-40MR/ES		24 points		16 points	Relay	84
FX5UJ-40MT/ES					Transistor/sink	84
FX5UJ-40MT/ESS					Transistor/source	84
FX5UJ-60MR/ES		36 points		24 points	Relay	84
FX5UJ-60MT/ES					Transistor/sink	84
FX5UJ-60MT/ESS					Transistor/source	84
- FX5U CPU modules						
FX5U-32MR/ES	$\begin{aligned} & 100 \text { to } 240 \mathrm{~V} \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	16 points	24 V DC sinksource	16 points	Relay	90
FX5U-32MT/ES					Transistor/sink	90
FX5U-32MT/ESS					Transistor/source	90
FX5U-64MR/ES		32 points		32 points	Relay	90
FX5U-64MT/ES					Transistor/sink	90
FX5U-64MT/ESS					Transistor/source	90
FX5U-80MR/ES		40 points		40 points	Relay	90
FX5U-80MT/ES					Transistor/sink	90
FX5U-80MT/ESS					Transistor/source	90
FX5U-32MR/DS	24 VDC	16 points	24 V DC sink/source	16 points	Relay	91
FX5U-32MT/DS					Transistor/sink	91
FX5U-32MT/DSS					Transistor/source	91
FX5U-64MR/DS		32 points		32 points	Relay	91
FX5U-64MT/DS					Transistor/sink	91
FX5U-64MT/DSS					Transistor/source	91
FX5U-80MR/DS		40 points		40 points	Relay	91
FX5U-80MT/DS					Transistor/sink	91
FX5U-80MT/DSS					Transistor/source	91
- FX5UC CPU modules						
FX5UC-32MT/D	24 VDC	16 points	24 V DC sink	16 points	Transistor/sink	99
FX5UC-32MT/DSS			24 V DC sink/source		Transistor/source	99
FX5UC-32MT/DS-TS					Transistor/sink	99
FX5UC-32MT/DSS-TS					Transistor/source	99
FX5UC-32MR/DS-TS		16 points	$24 \mathrm{~V} \mathrm{DC} \mathrm{sink/source}$	16 points	Relay	99
FX5UC-64MT/D		32 points	24 VDC sink	32 points	Transistor/sink	99
FX5UC-64MT/DSS			24 V DC sink/source		Transistor/source	99
FX5UC-96MT/D		48 points	24 VDC sink	48 points	Transistor/sink	99
FX5UC-96MT/DSS			24 V DC sink/source		Transistor/source	99

Safety extension module

Model	Specifications	Description page
FX5-SF-MU4T5	Safety main module 4-points safety input/4-points safety output	106
FX5-SF-8DI4	Safety input expansion module 8-points safety input	107

I/O module

Model	Specifications					Description page
	Rated voltage	Input		Output		
-IIE Extension cable type -						
- Input module						
FX5-8EXJES	Supplied from CPU module	8 points	24 V DC sink/source	-	-	110
FX5-16EXJES		16 points		-	-	110
- Output module						
FX5-8EYR/ES	Supplied from CPU module	-	-	8 points	Relay	110
FX5-8EYT/ES					Transistor/sink	110
FX5-8EYT/ESS					Transistor/source	110
FX5-16EYR/ES		-	-	16 points	Relay	110
FX5-16EYT/ES					Transistor/sink	110
FX5-16EYT/ESS					Transistor/source	110
- Input/output module						
FX5-16ER/ES	Supplied from CPU module	8 points	24 V DC sink/source	8 points	Relay	110
FX5-16ET/ES					Transistor/sink	110
FX5-16ET/ESS					Transistor/source	110
- High-speed pulse input/output module						
FX5-16ET/ES-H	Supplied from CPU module	8 points	24 V DC sink/source	8 points	Transistor/sink	145
FX5-16ET/ESS-H					Transistor/source	145
- Powered input/output module						
FX5-32ER/ES	$\begin{aligned} & 100 \text { to } 240 \text { V AC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	16 points	24 V DC sink/source	16 points	Relay	109
FX5-32ET/ES					Transistor/sink	109
FX5-32ET/ESS					Transistor/source	109
FX5-32ER/DS	24 V DC	16 points	24 V DC sink/source	16 points	Relay	109
FX5-32ET/DS					Transistor/sink	109
FX5-32ET/DSS					Transistor/source	109
-IIExtension connector type ■II						
- Input module						
FX5-C16EXD	Supplied from CPU module	16 points	24 V DC sink	-	-	111
FX5-C16EXDS			24 V DC sink/source			111
FX5-C32EXD		32 points	24 VDC sink	-	-	111
FX5-C32EX/DS						111
FX5-C32EXXSS-TS			24 VDC sinksource			111
- Output module						
FX5-C16EYT/D	Supplied from CPU module	-	-	16 points	Transistor/sink	111
FX5-C16EYT/DSS					Transistor/source	111
FX5-C16EYR/D-TS		-	-	16 points	Relay	111
FX5-C32EYT/D		-	-	32 points	Transistor/sink	111
FX5-C32EYT/DSS					Transistor/source	111
FX5-C32EYT/D-TS					Transistor/sink	111
FX5-C32EYT/DSS-TS					Transistor/source	111
- Input/output module						
FX5-C32ET/D	Supplied from CPU module	16 points	24 V DC sink	16 points	Transistor/sink	111
FX5-C32ET/DSS			24 V DC sink/source		Transistor/source	111
FX5-C32ET/DS-TS					Transistor/sink	111
FX5-C32ET/DSS-TS					Transistor/source	111

Expansion boards, Expansion adapter

Model	Specifications	Description page
FX5-232-BD	For RS-232C communication	175
FX5-485-BD	For RS-485 communication	175
FX5-422-BD-GOT	For GOT connection RS-422 communication	175
FX5-SDCD	SD memory card module	189
FX5-232ADP	For RS-232C communication	176
FX5-485ADP	For RS-485 communication	176
FX5-4A-ADP	2 ch analog input/2 ch analog output adapter	121
FX5-4AD-ADP	4 ch analog input adapter	122
FX5-4AD-PT-ADP	4 ch temperature sensor (resistance temperature detector) input adapter	128
FX5-4AD-TC-ADP	4 ch temperature sensor (thermocouple) input adapter	129
FX5-4DA-ADP	4 ch analog output adapter	122

FX5 extension power supply module, bus conversion module, connector conversion module

Model		Description page	
FX5-1PSU-5V	FX5UJ, FX5U (AC power supply type) extension power supply	190	
FX5-C1PS-5V	FX5U (DC power supply type)/ FX5UC extension power supply	191	
FX5-CNV-BUS	Bus conversion FX5 (extension cable type) \rightarrow FX3	190	
FX5-CNV-BUSC	Bus conversion FX5 (extension connector type) \rightarrow FX3		
FX5-CNV-IF	Connector conversion FX5 (extension cable type) \rightarrow FX5 (extension connector type)	190	191
FX5-CNV-IFC	Connector conversion FX5 (extension connector type) \rightarrow FX5 (extension cable type)		

FX5 intelligent function module

Model	Specifications	Description page
FX5-4AD	4 ch analog input	123
FX5-4DA	4 ch analog output	124
FX5-8AD	8 ch multi input	123
FX5-4LC	4 ch temperature control	131
FX5-20PG-P	2-axis pulse train positioning (transistor output)	146
FX5-20PG-D	2 -axis pulse train positioning (differential driver output)	146
FX5-40SSC-S	Simple motion 4-axis control	148
FX5-80SSC-S	Simple motion 8-axis control	148
FX5-40SSC-G	Motion 4-axis control	149
FX5-80SSC-G	Motion 8-axis control	149
FX5-ENET	Ethernet module	165
FX5-ENET/IP	EtherNet/IP module	167
FX5-CCL-MS	CC-Link system master/intelligent device station	160
FX5-CCLEF	Intelligent device station for CC-Link IE Field Network	159
FX5-CCLGN-MS	CC-Link IE TSN master/local module	158
FX5-ASL-M	AnyWireASLINK system master module	171
FX5-DP-M	PROFIBUS-DP master module	174
FX5-OPC	OPC UA module	184

FX3 extension power supply module

Model		Specifications	Description page
FX3U-1PSU-5V	FX3 extension power supply	191	

FX3 intelligent function module

Model		Specifications	Description page
FX3U-4AD	4 ch analog input	124	
FX3U-4DA	4 ch analog output	125	
FX3U-4LC	4 ch temperature control	132	
FX3U-1PG	Positioning pulse output 200 kpps	147	
FX3U-2HC	2 ch 200 kHz high-speed counter	137	
FX3U-16CCL-M	Master for CC-Link V2	162	
FX3U-64CCL	Interface for CC-Link V2	163	
FX3U-128ASL-M	Master for AnyWireALSINK system	172	
FX3U-32DP	PROFIBUS-DP slave	174	

Software package

Type	Model	Speciications	Description page
MELSOFT iQ Works (DVD-ROM)	SW2DND-IQWK-E*1	FA engineering software (English version)*2	185
MELSOFT GX Works3 (DVD-ROM)	SW1DND-GXW3-E	PLC engineering software*2 (English version bundled product: GX Works 2, with GX Developer included)	186
MX Component	SW4DNC-ACTE	Active ${ }^{\text {® }}$ library for communication (MX Component Ver. 4)	186
	SW5DND-ACT-E	Active ${ }^{\text {® }}$ library for communication (MX Component Ver. 5)	186
MX Sheet	SW2DNC-SHEET-E	Microsoff ${ }^{\text {E Excel }}$ communication support tool (MX Sheet Ver. 2)	186
	SW3DND-SHEET-E	Microsoft ${ }^{\text {® }}$ Excel®${ }^{\oplus}$ communication support tool (MX Sheet Ver. 3)	186
MX Works	SW2DNC-SHEETSET-E	A set of MX Component Ver. 4 and MX Sheet Ver. 2	186
	SW3DND-SHEETSET-E	A set of MX Component Ver. 5 and MX Sheet Ver. 3	186

*1: If you have a conventional model (SW1DN \square-IQWK-E), you cannot update.
Please purchase an upgraded version separately.
For details, please contact our sales representative.
*2: For the corresponding models of each software, please refer to the manual of each product.
Communication cable

Model		Specifications			Description page
FX-232CAB-1	3 m	9-pin D-sub (female) $\Leftrightarrow 9$ 9-pin D-sub (female) (for DOSN, etc.)	195		
MR-J3USBCBL3M	3 m	CPU module (built-in connector for USB communication) \Leftrightarrow personal computer	195		
GT09-C3OUSB-5P	3 m	CPU module (built-in connector for USB communication) \Leftrightarrow personal computer Made by Mitsubishi Electric System \& Service Co., Ltd.			

Input/output cable

Model		Specifications	Description page
FX-16E-150CAB	1.5 m	For connection between terminal block and FX5 PLC (Flat cable with connectors at both ends)	194
FX-16E-300CAB	3.0 m		194
FX-16E-500CAB	5.0 m		194
FX-16E-500CAB-S	5.0 m	Loose wire with connector on one end	194
FX-16E-150CAB-R	1.5 m	For connection between terminal block and FX5 PLC (Multi-core round cable with connectors at both ends)	194
FX-16E-300CAB-R	3.0 m		194
FX-16E-500CAB-R	5.0 m		194

Input/output connector

Model	Specifications	Descripion page
FX2C-I/O-CON	20-pin connector and 10 sets of crimp connector for flat cable	194
FX2C-//O-CON-S	20 -pin connector and 5 sets of housing for loose wire and crimp contact (for $0.3 \mathrm{~mm}^{2}$)	194
FX2C-//O-CON-SA	20 -pin connector and 5 sets of housing for loose wire and crimp contact (for $0.5 \mathrm{~mm}^{2}$)	194
A6CON1	40 -pin connector, soldered type for external device connection (straight protrusion)	194
A6CON2	40 -pin connector, crimped type for external device connection (straight protrusion)	194
A6CON4	40-pin connector, soldered type for external device connection (both straight/inclined protrusion type)	194
FX-//O-CON2-S	40-pin connector, 2 sets for discrete wire, AWG22 (0.3 mm)	194
FX-//O-CON2-SA	40 -pin connector, 2 sets for discrete wire, AWG20 (0.5 mm²)	194

Terminal block

Model	Speciifations	Description page
FX-16E-TB	16 input or output points	193
FX-32E-TB	32 input or output points	193
FX-16E-TB/UL	16 input or output points	193
FX-32E-TB/UL	32 input or output points	193
FX-16EYR-TB	16 relay output points, $2 \mathrm{~A} / 1$ point (8/4 points)	193
FX-16EYS-TB	16 triac output points, $0.3 \mathrm{~A} / 1$ point ($0.8 \mathrm{~A} / 4$ points)	193
FX-16EYT-TB	16 transistor output points, $0.5 \mathrm{~A} / 1$ point ($0.8 \mathrm{~A} / 4$ points) (sink output)	193
FX-16EYR-ES-TB/UL	16 relay output points, $2 \mathrm{~A} / 1$ point (8/4 points)	193
FX-16EYS-ES-TB/UL	16 triac output points, $0.3 \mathrm{~A} / 1$ point ($0.8 \mathrm{~A} / 4$ points)	193
FX-16EYT-ESS-TB/UL	16 transistor output points, $0.5 \mathrm{~A} / 1$ point ($0.8 \mathrm{~A} / 4$ points) (source output)	193

Power cable

Model		Specifications	Description page
FX2NC-100MPCB	FX5UC CPU module, for 24 V DC power supply	195	
FX2NC-100BPCB	Extension module (extension connector type), for 24 V DC input power supply	195	
FX2NC-10BPCB1	Extension module (extension connector type), for 24 V DC input power supply connection wiring		

Extended cable, connector conversion adapter

| Model | Specifications | | Description page |
| :--- | :--- | :--- | :--- | :--- |
| FX5-30EC | 30 cm | For the extension of FX5 extension module | 192 |
| FX5-65EC | 65 cm | | 192 |
| FX5-CNV-BC | For the connection between an extended extension cable and an FX5 input/output module (extension cable type), a high-speed pulse input/
 output module, or an FX5 intelligent function module | 192 | |

SD memory card, battery

Model		Specifications	Description page
NZ1MEM-2GBSD	SD memory card (2 GB)	189	
NZ1MEM-4GBSD	SDHC memory card (4 GB)	189	
NZ1MEM-8GBSD	SDHC memory card (8 GB)	189	
NZ1MEM-16GBSD	SDHC memory card (16 GB)		
FX3U-32BL	Battery	189	

memo

Global FA Center
Mitsubishi Electric Corporation FA Centers support all our customers and users of MELSEC iQ-F Series all over the world.

Japan (Tokyo)	FA Global Solution Technical Department	(TEL:+81-3-3218-6422)
Japan (Tokyo)	Asian Business Development Department	(TEL:+81-3-3218-6284)
China (Shanghai)	Mitsubishi Electric Automation (China) Ltd. Shanghai FA Center	(TEL:+86-21-2322-3030)
China (Beijing)	Mitsubishi Electric Automation (China) Ltd. Beijing FA Center	(TEL:+86-10-6518-8830)
China (Tianjin)	Mitsubishi Electric Automation (China) Ltd. Tianjin FA Center	(TEL:+86-22-2813-1015)
China (Shenzhen)	Mitsubishi Electric Automation (China) Ltd. Shenzhen FA Center	(TEL:+86-755-2399-8272)
China (Guangzhou)	Mitsubishi Electric Automation (China) Ltd. Guangzhou FA Center	(TEL:+86-20-8923-6730)
Taiwan (Taichung)	Mitsubishi Electric Taiwan Co., Ltd.	(TEL:+886-4-2359-0688)
Taiwan (Taipei)	SETSUYO ENTERPRISE CO., LTD	(TEL:+886-2-2299-9917)
Korea	Mitsubishi Electric Automation Korea Co., Ltd.	(TEL:+82-2-3660-9632)
ASEAN	Mitsubishi Electric Asia Pte. Ltd.	(TEL:+65-6470-2480)
Malaysia	Malaysia FA Center	(TEL.+60-3-7626-5080)
Indonesia	PT. Mitsubishi Electric Indonesia Cikarang Office	(TEL:+62-21-2961-7797)
Vietnam (Hanoi)	Mitsubishi Electric Vietnam Company Limited Hanoi Branch Office	(TEL:+84-24-3937-8075)
Vietnam (Ho Chi Minh)	Mitsubishi Electric Vietnam Company Limited	(TEL:+84-28-3910-5945)
Thailand	Mitsubishi Electric Factory Automation (Thailand) Co., Ltd.	(TEL.+66-2682-6522 to 31)
Philippines	MELCO Factory Automation Philippines Inc.	(TEL: $+63-(0) 2-8256-8042)$
India (Pune)	Mitsubishi Electric India Pvt. Ltd. Pune Branch	(TEL:+91-20-2710-2000)

India (Gurgaon)	Mitsubishi Electric India Pvt. Ltd. Gurgaon Head Office	(TEL:+91-124-463-0300)
India (Bangalore)	Mitsubishi Electric India Pvt. Ltd. Bangalore Branch	(TEL:+91-80-4020-1600)
India (Chennai)	Mitsubishi Electric India Pvt. Ltd. Chennai Branch	(TEL:+91-4445548772)
India (Ahmedabad)	Mitsubishi Electric India Pvt. Ltd. Ahmedabad Branch	(TEL:+91-7965120063)
India (Coimbatore)	Mitsubishi Electric India Pvt. Ltd. Coimbatore Branch	(TEL:+91-422-4385606)
North America	Mitsubishi Electric Automation, Inc.	(TEL:+1-847-478-2469)
Mexico	Mitsubishi Electric Automation, Inc. Queretaro Office	(TEL:+52-442-153-6014)
Mexico (Mexico City)	Mitsubishi Electric Automation, Inc. Mexico Branch	(TEL-+52-55-3067-7500)
Mexico (Monterrey)	Mitsubishi Electric Automation, Inc. Monterrey Office	(TEL.+52-55-3067-7599)
Brazil	Mitsubishi Electric do Brasil Comercio e Sevicos Ltda.	(TEL.+55-11-4689-3000)
Brazil (Votorantim)	MELCO CNC do Brasil Comercio e Servicos S.A.	(TEL:+55-15-3023-9000)
Europe	Mitsubishi Electric Europe B.V. Polish Branch	(TEL.+48-12-347-65-00)
Germany	Mitsubishi Electric Europe B.V. German Branch	(TEL:+49-2102-486-0)
UK	Mitsubishi Electric Europe B.V. UK Branch	(TEL.+44-1707-27-8780)
Czech Republic	Mitsubishi Electric Europe B.V. Czech Branch	(TEL:+420-734-402-587)
Italy	Mitsubishi Electric Europe B.V. Italian Branch	(TEL:+39-039-60531)
Russia	Mitsubishi Electric (Russia) LLC St. Petersburg Branch	(TEL:+7-812-633-3497)
Turkey	Mitsubishi Electric Turkey Elektrik Urunleri A.S.	(TEL:+90-216-969-2500)

About this product catalog

Due to the constantly growing product range and new or changed product features, the information in this catalog may be updated without notice. Please contact your Mitsubishi Electric product provider for more details.
Texts, figures and diagrams shown in this product catalog are intended exclusively for explanation and assistance in planning and ordering the FX5 programmable logic controllers (PLCs) and the associated accessories. Only the manuals supplied with the modules are relevant for installation, commissioning and handling of the modules and the accessories. The information given in the manuals must be read before installation and commissioning of the modules or software.
If any questions arise regarding the application or use of the PLC modules and accessories described in this catalog, please contact your Mitsubishi Electric product provider.

This catalog confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this catalog.

©2017 MITSUBISHI ELECTRIC CORPORATION

TRADEMARKS

- Anywire and AnyWireASLINK are either registered trademarks or trademarks of Anywire Corporation.
- Celeron, Intel, and Pentium are either registered trademarks or trademarks of Intel Corporation in the United States and/or other countries.
- Microsoft, Microsoft Access, ActiveX, Excel, SQL Server, Visual Basic, Visual C++, Visual C\# Visual Studio, Windows, Windows NT, Windows Server, Windows Vista, and Windows XP are trademarks of the Microsoft group of companies.
- OPC UA and OPC CERTIFIED logos are registered trademarks of OPC Foundation.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes software derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm

- PLCopen and related logos are registered trademarks of PLCopen ${ }^{\oplus}$.
- QR Code is either a registered trademark or a trademark of DENSO WAVE INCORPORATED in the United States, Japan, and/or other countries.
- The SD and SDHC logos are trademarks of SD-3C, LLC.
- Unicode is either a registered trademark or a trademark of Unicode, Inc. in the United States and other countries.
- "YouTube" and YouTube logo mark are either registered trademarks or trademarks of Google LLC.
- The company names, system names and product names mentioned in this document are either registered trademarks or trademarks of their respective companies.
- In some cases, trademark symbols such as 'TM' or 'Ф, are not specified in this document.

Automating the World

Creating Solutions Together.

Low-voltage Power Distribution Products

Transformers, Med-voltage Distribution
Products Products

Power Monitoring and Energy Saving Products

Power (UPS) and Environmental Products

Compact and Modular Controllers

Servos, Motors and Inverters

Visualization: HMIS

Edge Computing Products

Mitsubishi Electric's product lineup, from various controllers and drives to energy-saving devices and processing machines, all help you to automate your world. They are underpinned by software, innovative data monitoring, and modelling systems supported by advanced industrial networking and Edgecross IT/OT connectivity. Together with a worldwide partner ecosystem, Mitsubishi Electric factory automation (FA) has everything to make loT and Digital Manufacturing a reality.

With a complete portfolio and comprehensive capabilities that combine synergies with diverse business units, Mitsubishi Electric provides a one-stop approach to how companies can tackle the shift to clean energy and energy conservation, carbon neutrality and sustainability, which are now a universal requirement of factories, buildings, and social infrastructure.

We at Mitsubishi Electric FA are your solution partners waiting to work with you as you take a step toward the realization of sustainable manufacturing and society through the application of automation.
Let's automate the world together!

[^0]: current in the input circuit)

[^1]: AC AC power supply
 D2 DC input (sink/source)
 T1 Transistor output (sink)
 2 Transistor output (source)
 Relay output

[^2]: *1: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.

 Models with restrictions are marked with symbols such as $* \mathrm{~A} / * \mathrm{~B} / * \mathrm{C}$. For details of

 Spring clamp terminal block type.

[^3]: *1: The values show the state where the service power of 24 VDC is consumed to the maximum level in case that its configuration has the max. number of connections provided to CPU module. (Including the current in the input circuit)
 *2: The values in the parentheses () indicate the power supply capacity to be resulted when the power supply voltage falls in the range from 16.8 to 19.2 VDC
 *3: The values in the brackets [] will result when the ambient temperature is less than $0^{\circ} \mathrm{C}$ during operations.

[^4]: Models with restrictions are marked with symbols such as $* \mathrm{~A} / * \mathrm{~B} / * \mathrm{C}$. For details of restrictions, refer to P78 [List of annotations].

[^5]: Models with restrictions are marked with symbols such as $* \mathrm{~A} / * \mathrm{~B} / * \mathrm{C}$. For details of restrictions, refer to P78 [List of annotations].

[^6]: *1: Can be changed with parameters within the capacity range of the CPU built-in memory

[^7]: *2: The sum of index register (Z) and long index register (LZ) is 24 words

[^8]: *1: Can be changed with parameters within the capacity range of the CPU built-in memory

[^9]: *: Max. number of control points, including remote I/O points.

[^10]: *1: While the backup/restore function is executed, some functions are temporarily unavailable. For details, refer to the manual
 *2: A firmware upgrade may be required to use some functions and modules. For details, refer to appendix P77 [Function compatibility table].
 *3: Excluding the buffer memory of the intelligent function module

[^11]: *1: A firmware upgrade may be required to use some functions and modules. For details, refer to appendix P77 [Function compatibility table].

[^12]: Models with restrictions are marked with symbols such as $* \mathrm{~A} / * \mathrm{~B} / * \mathrm{C}$. For details of restrictions, refer to P78 [List of annotations].

[^13]: *1: SeamLess Message Protocol
 *2: A firmware upgrade may be required to use some functions and modules. For details, refer to appendix P77 [Function compatibility table]

[^14]: *: If a product other than the reference product is used, the wire ferrule cannot be pulled out. Sufficiently Confirm that the wire ferrule can be pulled out before use.

[^15]: *1: A firmware upgrade may be required to use some functions and modules. For details, refer to appendix P77 [Function compatibility table].
 *2: Requires the optional SD memory card module (FX5-SDCD).
 *3: A communication board or communication adapter is required

[^16]: *: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.

[^17]: *1: By connecting a 250Ω resistor (0.5% precision resistance) between the $\mathrm{V}+$ and V - terminals, the analog input of the built-in analog can be used with current input (4 to 20 mA DC).
 *3: Varies according to the input range of the sensor in use.

[^18]: *: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model differ, or separate equipment may be required for
 Selection or use the FA Integrated Selection Tool.

[^19]: *: The maximum number of registered cams varies depending on the memory capacity, cam resolution, and the number of coordinates.

[^20]: *1: The availability of the connection depends on the version of the CPU module. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool
 *2: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Mode

[^21]: *1: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.
 *2: For the corresponding station types and CPU modules, refer to P60 [Station type list].

[^22]: Characteristics

 - EtherNet/IP is an open network using the CIP communication protocol and works alongside general-purpose Ethernet.

[^23]: FX5-ENET/IP enables communication using an Ethernet connection. For functions, refer to P52 [General-purpose Ethernet]

[^24]: *: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.

[^25]: *: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model

[^26]: *1: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.
 *2: There is no regulation about such as the specification of branching method and minimum distance between terminals
 *3: Total extension distance including branch line length
 *4: The number varies depending on current consumption of each remote module.

[^27]: Models with restrictions are marked with symbols such as $* \mathrm{~A} / * \mathrm{~B} / * \mathrm{C}$. For details of restrictions, refer to P78 [List of annotations].

[^28]: - The OPC UA security functions, such as certificate, encryption, and signing, can be set optionally.
 - A common key can be generated for secure communication with OPC UA clients. The generated common key is encrypted and transmitted using the public key contained in the certificate and the corresponding private key.

[^29]: *: Depending on the CPU module, system configuration, serial number, etc., the type and number of connectable modules may differ, or separate equipment may be required for connection. For details, please refer to Chapter 1 Lineup Details and Model Selection or use the FA Integrated Selection Tool.

[^30]: *: The link between the seek bar display and GX LogViewer is supported by GX Works3 Ver. 1.065T or later.

[^31]: - Simulation can be done without going to the site, which reduces programming man-hours
 - Even without a servo motor or amplifier, it is possible to check operation closer to actual machine tests.

[^32]: *: Supported by GX Works3 Ver. 1.035M or later.

[^33]: - Specified device values can be monitored in real time at any required interval or timing.
 - Changes in device values can be verified numerically or graphically, improving debugging efficiency during troubleshooting.

[^34]: Kaizen*1 = continuous improvement
 TCO = Total Cost of Ownership

[^35]: *1: When two or more FX5-4DA-ADP are used, and if they are connected adjacent to FX5-4A-ADP with a serial number 223 ${ }^{\star \star * *}$ or older, connect them only to one side. Do not use both sides.

[^36]: *1: The number in parentheses represents occupied points. Use the value in parentheses to calculate the total number of input/output points.
 *2: Power supply capacity when an external power supply is used for input circuits.

[^37]: *1: Locate these modules on the rightmost side of the system configuration. However, this does not apply when the safety input extension module is connected
 They cannot be used together with the bus conversion module or FX3 extension module
 *2: Supported by FX5UJ CPU modules Ver. 1.010 or later.
 *3: Supplied from external 24 V DC power supply of the FX5-SF-MU4T5.

[^38]: *: CC-Link IE Field Network Basic remote I/O stations are not calculated as remote I/O points.

[^39]: * 2. Currented
 *2: Current consumption when an external power supply is used for input circuits.

[^40]: *1: Locate these modules on the rightmost side of the system configuration. However, this does not apply when the safety input extension module is connected
 They cannot be used together with the bus conversion module or FX3 extension module.
 *2: Supported by FX5U CPU module Ver. 1.200 or later.
 *3: Supplied from external 24 V DC power supply of the FX5-SF-MU4T5.

[^41]: *1: Supported by FX5UC Ver. 1.100 or later and by GX Works3 Ver. 1.047 Z or later.
 2: For FX5-4A-ADP with a serial number $223^{ * * *}$ or older, up to two modules can be connected in the entire system.

[^42]: *1: Locate these modules on the rightmost side of the system configuration. However, this does not apply when the safety input extension module is connected.
 They cannot be used together with the bus conversion module or FX3 extension module.
 *2: Supported by FX5UC CPU module Ver. 1.200 or later
 *3: Supplied from external 24 V DC power supply of the FX5-SF-MU4T5.

[^43]: *1: Supported by FX5UJ CPU modules Ver. 1.010 or later. Supported by FX5U/FX5UC CPU module Ver. 1.200 or later.
 *2: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
 *3: The off-delay time is set on the safety main module.

[^44]: *: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V)

[^45]: *: Connection with FX5UJ/FX5U CPU module requires connector conversion module (FX5-CNV-IFC).

[^46]: *1: For details on the output conversion characteristic, refer to manuals of each product.

[^47]: * : Connection with FXSUC CPU module requires connector conversion module (FXX-CNV-FC) or extension power supply module (FX5-C1PS-5V).
 *2: Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).

[^48]: A: Input A phase (In the case of 1-phase 1-input, pulse input is employed and in the case of 1-phase 2-input, pulse input of down-counting direction is employed. B: Input B phase (In the case of 1-phase 1-input (H/W), direction switch input is employed and in the case of 1-phase 2-input, pulse input of down-counting direction is employed.)
 P: Input external preset
 E: Input external enable

[^49]: * : Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC)

[^50]: *: " \square " represents the prefix input number of each high-speed pulse input/output module.

[^51]: *: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).

[^52]: *1: Can be substituted by variable speed operation instruction.
 *2: Dog search function available.
 *3: Count type, and data set type function available.
 *4: Count type, scale origin signal detection type, and data set type function available.
 $* 5$: Can be substituted by 1 -speed positioning table operation.
 *6: Can be substituted by variable speed operation or interrupt 1 -speed positioning operation.
 $* 7$: Can be substituted by speed-position switching control and speed change function.

[^53]: *1: Can be substituted by variable speed operation or interrupt 1-speed positioning operation.
 *2: Simple linear interpolation only.

[^54]: *1: The numbers of stations shown above include the master station. When more than 1 master station (FX5-CCLGN-MS, FX5-40/80SSC-G, etc.) using the device station
 parameters is connected to the CPU module, the total number of the device stations must be less than the number of the device station parameter files that can be saved in the
 CPU module. For details about the number of device station parameter files that can be saved in the CPU module, refer to the manual.
 *2: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).

[^55]: *: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).

[^56]: *: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).

[^57]: * 1: Any station number can be set for the master station.
 *2: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).
 *3: Connection with FX5U/FX5UC CPU module requires bus conversion module (FX5-CNV-BUS or FX5-CNV-BUSC).

[^58]: *1: FX5S, FX5UJ CPU module does not have a built-in RS-485 port.
 *2: No expansion board can be used in FX5UC CPU module.

[^59]: *: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V).

[^60]: *: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V)

[^61]: *: Connection with FX5UC CPU module requires connector conversion module (FX5-CNV-IFC) or extension power supply module (FX5-C1PS-5V)

[^62]: *: When using the FX3U-16CCL-M, it cannot be used together with the FX5-CCL-MS used as the master station.

[^63]: *1: The communication method and communication speed vary depending upon the communication type.

[^64]: * : Function expansion board cannot be connected to FX3UC- $\square \square$ MT/D, FX3UC- $\square \square M T / D S S$, and FX3UC-16MR/D \square-T. A special adapter can be connected directly.

[^65]: *: Select wires with a sheath outside diameter of 1.3 mm or less when using 40 wires.
 Select wires suitable to the current value used.

[^66]: * 1: Can be changed with parameters within the capacity range of the CPU built-in memory.
 *2: The sum of index register (Z) and long index register (LZ) is 24 words.

[^67]: *: The number in parentheses represents occupied points.

[^68]: *: The number in parentheses represents occupied points.

[^69]: *: When two common terminals are connected outside the CPU module, resistance load is 8 A or less.

[^70]: *: Supported by FX5UJ/FX5U/FX5UC CPU module Ver. 1.030 or later.

[^71]: *1: For details on the input conversion and output conversion characteristics, refer to the manual.
 *2: Digit refers to digital values.

[^72]: *1 : Class 3 communication supports the server functions.

