

Ultra-Mini ELECYLINDER® EC-GDS3/GDB3

www.intelligentactuator.com

Believe it: A built-in controller at this size!

ECC Ultra-Mini ELECYLINDER® C-T3

Select from three types according to the application

Туре	Slider	Rod	Table
Products	EC-SL3	EC-GDS3/GDB3	EC-T3
Max. speed	200 mm/s	200 mm/s	200 mm/s
Max. push force	16N	17N	17N
Max. payload [Horizontal/vertical]	2 kg/0.7 kg	2 kg/0.8 kg	2 kg/0.8 kg

*Vertical only for GDS3

The Ultra-Mini ELECYLINDER

resolves all kinds of small air cylinder problems!

Status shown by body LEDs

LEDs on the body clarify the operation status. With forward end/backward end display added, the status is clear at a glance.

Simple operation with wireless connection

The teaching pendant (TB-03) can be connected wirelessly to an ELECYLINDER within a 5m radius. This enables status confirmation, position/speed setting, test runs and so on.

• Multi-axis control and network connection with RCON-EC connection specification

Use of the ELECYLINDER dedicated drive unit REC enables connection with up to 16 axes, reducing wiring and saving control panel space.

Model Specification Items

*Please refer to the reference page of each type for details.

Specification Tables

Slider													
		Le	ad			Stroke (mm) and max sp	beed (mm/s)			Max. pay	load (kg)	
Product type	Type	Model	mm		*Length of I	oand = Stroke; *N	lumbers in band	= Maximum spe	ed by stroke		Horizontal	1 Vert	Reference Page
type		Model	mm	50	75	100	125	150	175	200		↓iical	· «ge
ci: I	61.2	M-	4				200				1	0.3	07
Slider	SL3	L-	2				100				2	0.7	P7

Rod

			Le	ad		Stroke (m	im) and max spee	ed (mm/s)		Max.	Max. pay	load (kg)	
	Product type	Type	Madal		*L	ength of band = Stroke	; *Numbers in band = N	Maximum speed by stro	ke	push force	Horizontal	t er	Reference Page
	0,60		Model		10	20	30	40	50	(N)	\longleftrightarrow		. uge
		GDS3	L-	2		100				17	-	0.8	P11
	Rod		M-	4			200			10	1	0.4	D15
ĺ		GDB3	L-	2		1	100	1		17	2	0.8	P15

Table

		Lead Stroke (mm) and max speed (mm/s)					Max.	Max. pay	load (kg)			
Product type	Type	Madal		*L	ength of band = Stroke	; *Numbers in band = N	Aaximum speed by stro	oke	push force	Horizontal	↑ Vert	Reference
type		Model	mm	10	20	30	40	50	(N)	\longleftrightarrow		ruge
		M-	4			200			10	1	0.4	510
Table	13	L-	2			100			17	2	0.8	P19

Mounting Orientation

 $\bigcirc:$ Can be mounted $\times:$ Cannot be mounted

			Mounting	orientation	
Series Type					
Series	Туре	Horizontal mounting on flat surface	Vertical mounting (Note 1)	Horizontal mounting to side	Horizontal mounting suspended
	SL3	0	0	○ (Note 2)	O (Note 2)
F.C.	GDS3	×	0	×	×
EC	GDB3	0	0	0	0
	ТЗ	0	0	0	0

(Note 1) When mounting vertically, be sure to install the motor on the top. Installing with the motor on the bottom could cause grease to separate and base oil to leak into the motor, which could cause controller or motor encoder failure. It is therefore not recommended to install the motor on the bottom side.
(Note 2) Installing the product horizontal to side or horizontally ceiling mounted may cause slack or misalignment in the stainless steel sheet, so inspect regularly and adjust as needed.
(Note) Keep the body installation surface and workpiece mounting surface flatness and straightness at or below the values below.

Turne	Body installa	ation surface	Workpiece mounting surface		
туре	Flatness	Straightness	Flatness	Straightness	
SL3		0.01mm or less		_	
GDS3 GDB3	0.02mm/m or less	_	0.02mm/m or less	_	
ТЗ		_		0.01mm or less	

If the body installation surface and workpiece mounting surface flatness and straightness do not satisfy the figures above, the sliding resistance will increase, leading to malfunctions.

Mounting Methods

Mount according to the mounting method for the applicable type.

EC ELECYLINDER[®]

EC-SL3 odv Widt **24**v 30 Lead Scre Coupled Steppei Mot Moto mm Model Specification Items EC SL3 Series - Type Lead Stroke Actuator cable length Power I/O cable connector length Options M 50 4mm 50m See power I/O cable connector length table below See actuator cable length table below See options below L 2mm 200 200mm every 25m RoHS CE 10

Stroke

_		
Stroke (mm)	RCON-EC connection specification (Note 1)	NPN/PNP specifications
50	0	0
75	0	0
100	0	0
125	0	0
150	0	0
175	0	0
200	0	0

(Note 1) Be sure to select "ACR" as an option.

Options * Please check the Options reference pages to confirm each option.

Name	Option code	Reference page
RCON-EC connection specification (Note 2) (Note 3)	ACR	23
Brake	В	23
Cable exit direction (bottom)	CJB	23
Cable exit direction (left)	CJL	23
Cable exit direction (right)	CJR	23
Cable exit direction (top)	CJT	23
Non-motor end specification	NM	23
PNP specification (Note 2)	PN	23
Split motor and controller power supply specification (Note 2)	TMD2	23
Wireless communication specification (Note 3)	WL	23
Wireless axis operation specification (Note 3)	WL2	23

(Note 2) If the RCON-EC connection specification (ACR) is selected, the PNP specification (PN) and split motor and controller power supply specification (TMD2) cannot be selected. As well, the interface box and conversion cable are not included.
(Note 3) When selecting the RCON-EC connection specification (ACR), the wireless communication specification (WL) and wireless axis operation supported specification (WL2) cannot be selected. When using wireless communication with RCON-EC connection, separately prepare the interface box, conversion cable, and power / I/O cable connector which are available as options. Please refer to P. 27 for details.

Separately Sold Options

Name	Model	Reference page
Interface box conversion cable	CB-CVN-BJ002	32
RCON-EC connection specification power / I/O cable (standard connector cable)	CB-REC- PWBIO□□□-RB	33
RCON-EC connection specification power / I/O cable (4-way connector cable)	CB-REC2- PWBIO□□□-RB	33
RCON-EC connection specification interface box for split motor and controller power supply (wireless specification)	ECW-CVNWL-CB- ACR	32

(Note) The power / I/O cable connector is a robot cable Please indicate the cable length in $\Box \Box \Box$. (Ex.: 010 = 1m)

FC-SL3

(1) "Main Specifications" displays the payload's maximum value. Please refer to "Table of Payload by Speed/Acceleration" for more details.

ertical

Side

Ceiling

Horizonta

- (2) If performing push-motion operations, refer to the "Correlation Diagrams between Push Force and Current Limit." The push forces listed are only reference values. Please refer to P. 26 for applicable notes.
- (3) Pay close attention to the mounting orientation. Refer to P. 5 for details.
- (4) Reference value of the overhang load length is under 100mm in the Ma, Mb, and Mc directions. Please refer to the explanation on P. 26 for the overhang load length.
- (5) The center mass location of the attached object should be less than 1/2 of the overhang distance. Operating conditions should be moderated if abnormal vibration or noise is observed, even if the overhang distance and load moment are within allowable values.

Actuator Cable Length

Selection

Notes

∕!

Cable code	Cable length	Actuator cable length
1~3	1 ~ 3m	0
4~5	4 ~ 5m	0
6~10	6 ~ 10m (Note 4)	0

(Note 4) When connecting via the interface box, 9m is the maximum available.
(Note) Make sure that the total length along with the power I/O cable connector is 10m

Power I/O Cable Connector Length

Standard Connector Cable

Cable code	Cable length	User wiring specification (flying leads) CB-EC-PWBIO□□-RB supplied
0	Without cable	○ (Note 5)
1~3	1 ~ 3m	0
4~5	4 ~ 5m	0
6~7	6 ~ 7m	0
8~9	8 ~ 9m	0

(Note 5) Only terminal block connector is included. When selecting RCON-EC connection specification (ACR) as an option, select "0." Terminal block connector is no included. Refer to P. 30 for details.

Robot cable (Note)

or less.

4-way Connector Cable

Cable code	Cable length	User wiring specification (flying leads) CB-EC2-PWBIO□□-RB supplied
S1 ~ S3	1 ~ 3m	0
S4 ~ S5	4 ~ 5m	0
S6 ~ S7	6 ~ 7m	0
S8 ~ S9	8 ~ 9m	0

(Note) Robot cable.

EC ELECYLINDER[®]

Main Specifications

		Item	Descr	iption
Lead		Ball screw lead (mm)	4	2
	Payload	Max. payload (kg)	1	2
	c 1/	Max. speed (mm/s)	200	100
Horizontal	Speed /	Min. speed (mm/s)	20	10
	deceleration	Rated acceleration/deceleration (G)	0.5	0.3
	acceleration	Max. acceleration/deceleration (G)	0.5	0.3
	Payload	Max. payload (kg)	0.3	0.7
	c 1/	Max. speed (mm/s)	200	100
Vertical	Speed / acceleration/	Min. speed (mm/s)	20	10
		Rated acceleration/deceleration (G)	0.5	0.3
	deceleration	Max. acceleration/deceleration (G)	0.5	0.3
Duch		Max. push force (N)	9	16
Push		Max. push speed (mm/s)	20	20
Brake		Brake specification	Non-excitation actuating solenoid brake	
		Brake holding force (kgf)	0.3	0.7
		Min. stroke (mm)	50	50
Stroke	2	Max. stroke (mm)	200	200
		Stroke pitch (mm)	25	25

ltem	Description					
Drive system	Rolling screw					
Positioning repeatability	±0.05mm					
Lost motion	- (notation not available due to 2-point positioning function)					
Base	Dedicated aluminum extruded material (A6063SS-T5 equivalent), black alumite treatment					
Linear guide	Linear motion infinite circulating type					
	Ma: 11.7N·m					
Allowable static	Mb: 11.7N·m					
moment	Mc: 22.0N·m					
Allowable dynamic	Ma: 4.71N·m					
moment	Mb: 4.71N·m					
(Note 6)	Mc: 8.84N·m					
Ambient operating temperature, humidity	0 ~ 40°C, 85%RH or less (no condensation)					
Ingress protection	IP20					
Vibration & shock resistance	4.9m/s ²					
Overseas standards	CE marking, RoHS directive					
Motor type	Stepper motor (ϕ 20)					
Encoder type	Incremental					
Number of encoder	32768 pulse/rev					

(Note 6) Based on the standard rated operation life of 5,000km. Operation life varies according to operating and mounting conditions. Please refer to General Catalog 2021 P. 1-244 for details on operation life.

Table of Payload by Speed/Acceleration

The unit for payload is kg.

Lead 4

Lead 2

Orientation	Horizontal	Vertical	Orientation	Horizontal	Vertical
Speed	Acceleration (G)		Speed	Acceleration (G)	
(mm/s)	0.5	0.5	(mm/s)	0.3	0.3
0	1	0.3	0	2	0.7
100	1	0.3	20	2	0.7
150	1	0.3	50	2	0.7
200	1	0.3	100	2	0.7

Stroke and Max. Speed

Lead	50	75	100	125	150	175	200	
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
4		200 <200>						
2	100 <100>							
						(Unit	mm/s)	

(Note) Values in brackets < > are for vertical use.

	Corr	elatio	on Di	agra	ms be	etwee	en Pu	sh Fo	orce a	nd Ci	urren	t Lim
									Recor	nme	nded	area
	22										/	
Î	16								1	1		
orce (14 12	Lead	d 2 (uj	oper l	imit v	alue)	-				دندن ا	

			_								_			
ğ	12	Lea	id 2	(upp	er limi	t valu	ie)	1					تشنشن	
r L	10	Lea	ad 2	(av	erage	valu	ie)	\sim			فتقتن			
P	0	Lea	id 2	(low	er limi	t valu	ie)	الشار ال		-	\geq			
	0	Lea	id 4	(upp	er limi	t vali	ie)	~						
	4	Lea	ad 4	(av	erage	valu	ie)							
	2	Lea	id 4	(low	er limi	t vali	ie)							
	0)	10	20	30	40	50	6	0	7	08	0 9	0 10	0 110
					C	urrei	nt lii	mit	val	ue	(%)			

8

Dimensions by Stroke

	Stroke	50	75	100	125	150	175	200
L	Without brake	189	214	239	264	289	314	339
(Note 8)	With brake	214	239	264	289	314	339	364
	A	129.5	154.5	179.5	204.5	229.5	254.5	279.5
	В	117	142	167	192	217	242	267
С		50	100	100	100	100	100	100
	D	1	1	1	1	1	2	2
	E	4	4	4	4	4	6	6
	F	50	100	100	100	100	100	100
G		1	1	1	1	1	2	2
Н		4	4	4	4	4	6	6
	J	50	75	100	125	150	175	200

(Note 8) When selecting cable exit direction (option), 1 is subtracted from the dimensions.

Mass by Stroke

	Stroke	50	75	100	125	150	175	200
Mass	Without brake	0.25	0.28	0.31	0.32	0.35	0.37	0.40
(kg)	With brake	0.27	0.30	0.33	0.34	0.37	0.39	0.42

- EC ELECYLINDER. IAI

EC ELECYLINDER[®]

EC-GDS3

Stroke

Stroke (mm)	RCON-EC connection specification (Note 1)	NPN/PNP specifications
10	0	0
20	0	0
30	0	0

(Note 1) Be sure to select "ACR" as an option.

Options * Please check the Options reference pages to confirm each option.

Name	Option code	Reference page
RCON-EC connection specification (Note 2) (Note 3)	ACR	23
Brake	В	23
Cable exit direction (bottom)	CJB	23
Cable exit direction (left)	CJL	23
Cable exit direction (right)	CJR	23
Cable exit direction (top)	CJT	23
Non-motor end specification	NM	23
PNP specification (Note 2)	PN	23
Split motor and controller power supply specification (Note 2)	TMD2	23
Wireless communication specification (Note 3)	WL	23
Wireless axis operation specification (Note 3)	WL2	23

(Note 2) If the RCON-EC connection specification (ACR) is selected, the PNP specification (PN) and split motor and controller power supply specification (TMD2) cannot be selected. As well, the interface box and conversion cable are not included.
(Note 3) When selecting the RCON-EC connection specification (ACR), the wireless communication specification (WL) and wireless axis operation supported specification (WL2) cannot be selected. When using wireless communication specification (WL2) cannot be selected. When using wireless communication specification (WL2) cannot be selected. When using wireless communication with RCON-EC connection, separately prepare the interface box, conversion cable, and power / I/O cable connector which are available as options. Please refer to P. 27 for details.

Separately Sold Options

Name	Model	Reference page
Interface box conversion cable	CB-CVN-BJ002	32
RCON-EC connection specification power / I/O cable (standard connector cable)	CB-REC- PWBIO - RB	33
RCON-EC connection specification power / I/O cable (4-way connector cable)	CB-REC2- PWBIO□□-RB	33
RCON-EC connection specification interface box for split motor and controller power supply (wireless specification)	ECW-CVNWL-CB- ACR	32

The power / I/O cable connector is a robot cable. Please indicate the cable length in $\Box \Box \Box$. (Ex.: 010 = 1m) (Note)

- (1) "Main Specifications" displays the payload's maximum value. Please refer to "Table of Payload by Speed/Acceleration" for more details.
- (2) If performing push-motion operations, refer to the "Correlation Diagrams between Push Force and Current Limit." The push forces listed are only reference values. Please refer to P. 26 for
 - applicable notes. (3) Pay close attention to the mounting orientation. Please refer to P. 5 for details.
- (4) Recommended for use in stopper applications. Refer to the
- instruction manual for the usage range.

Actuator Cable Length

Cable code	Cable length	Actuator cable length				
1~3	1 ~ 3m	0				
4~5 4~5m		0				
6 ~ 10 6 ~ 10m (Note 4)		0				

(Note 4) When connecting via the interface box, 9m is the maximum available. (Note) Make sure that the total length along with the power I/O cable connector is 10m or less

Power I/O Cable Connector Length

Standard Connector Cable

Cable code	Cable length	User wiring specification (flying leads) CB-EC-PWBIO□□-RB supplied
0	Without cable	○ (Note 5)
1~3	1 ~ 3m	0
4~5	4 ~ 5m	0
6~7	6 ~ 7m	0
8~9	8 ~ 9m	0

(Note 5) Only terminal block connector is included. When selecting RCON-EC connection specification (ACR) as an option, select "0." Terminal block connector is not included. Refer to P. 30 for details. (Note) Robot cable

4-way Connector Cable

Cable code	Cable length	User wiring specification (flying leads)		
		CB-EC2-PWBIO		
S1 ~ S3	1 ~ 3m	0		
S4 ~ S5	4 ~ 5m	0		
S6 ~ S7	6 ~ 7m	0		
S8 ~ S9	8 ~ 9m	0		

(Note) Robot cable.

Main Specifications

		Item	Description
Lead		Ball screw lead (mm)	2
	Payload	Max. payload (kg)	0.8
	c 1/	Max. speed (mm/s)	100
Vertical	Speed /	Min. speed (mm/s)	10
	deceleration	Rated acceleration/deceleration (G)	0.3
	acceleration	Max. acceleration/deceleration (G)	0.3
Durah		Max. push force (N)	17
Push		Max. push speed (mm/s)	20
Brake		Brake specification	Non-excitation actuating solenoid brake
		Brake holding force (kgf)	0.8
Stroke		Min. stroke (mm)	10
		Max. stroke (mm)	30
		Stroke pitch (mm)	10

Item	Description
Drive system	Rolling screw
Positioning repeatability	±0.05mm
Lost motion	- (notation not available due to 2-point positioning function)
Rod non-rotation precision	-
Operation life	Vertical 5 million operating cycles
Ambient operating temperature, humidity	$0 \sim 40^{\circ}$ C, 85%RH or less (no condensation)
Ingress protection	IP20
Vibration & shock resistance	4.9m/s ²
Overseas standards	CE marking, RoHS directive
Motor type	Stepper motor (ϕ 20)
Encoder type	Incremental
Number of encoder pulses	32768 pulse/rev

EC ELECYLINDER[®]

Table of Payload by Speed/Acceleration

The unit for payload is kg.

Lead 2

Orientation	Vertical
Speed	Acceleration (G)
(mm/s)	0.3
0	0.8
30	0.8
70	0.8
100	0.8

Stroke and Max. Speed

Lead	10	20	30	
(mm)	(mm)	(mm)	(mm)	
2		100		

(Unit: mm/s)

Correlation Diagrams between Push Force and Current Limit

								Recor	nmei	nded	area
22										1	
20								-		1	
18								+	1		
16								11		\sim	
14									\sim		
12						1	-				
12	1	2 (nor li	ma it		1		1			
10	-Leau	-z-(u	pper-II	IIIIL-V	aiue)-						
8	-Lead	d-2-(a	ivera	ge va	ilue)-			-			
6	-Lead	-2·(lo	werli	mit va	alue)-	1.11					
4					,						
2											
-											
0	1	0 2	0 3	0 4	0 5	0 6	0	70 8	0 0	0 10	0 110
	, ,	0 2	0 5	Cur	rontl	imit	vəlu	A (06)	0)	0 10	0 110
	22 20 18 16 14 12 10 8 6 4 2 0	22 20 18 16 14 12 10 -Lead 8 -Lead 6 -Lead 4 2 0 0 1	22 20 18 16 14 12 10 Lead-2-(up 8 Lead-2-(a 6 6 Lead-2-(a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 20 18 16 16 12 10 - Lead 2. (upper-li) 8 - Lead 2. (upper-li) 6 - Lead 2. (lower-li) 4 2 0 10 20 3	22 20 18 14 14 12 14 14 12 10 10 10 20 20 10 20 20 10 20 20 10 20 20 10 20 20 10 20 20 20 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	22 20 18 14 14 10 14 12 12 14 12 14 12 14 12 14 12 14 14 12 14 14 14 14 14 14 14 14 14 14	22 20 18 14 14 10 14 12 14 12 14 14 12 14 14 14 14 14 14 14 14 14 14	22 20 18 14 14 12 14 12 14 12 14 12 14 12 14 14 14 14 14 14 14 14 14 14	Recor Re	Recommend Recommend	Recommended

EC-GDS3 **12**

Dimensions by Stroke

	Stroke	10	20	30
L	Without brake	97	107	117
(Note 7)	With brake	122	132	142
	В	28	38	48
C		10	20	30
F		0	10	20
Н		2	4	4
	J	0	10	20

(Note 7) When selecting cable exit direction (option), 1 is subtracted from the dimensions.

Mass by Stroke

	Stroke	10	20	30
Mass (kg)	Without brake	0.15	0.17	0.19
	With brake	0.17	0.19	0.21

- EC ELECYLINDER. IAI

EC ELECYLINDER'

EC-GDB3

Stroke

_		
Stroke (mm)	RCON-EC connection specification (Note 1)	NPN/PNP specifications
10	0	0
20	0	0
30	0	0
40	0	0
50	0	0

(Note 1) Be sure to select "ACR" as an option.

Options	* Please check the O	ptions reference pa	ges to confirm each o	option
---------	----------------------	---------------------	-----------------------	--------

Name	Option code	Reference page
RCON-EC connection specification (Note 2) (Note 3)	ACR	23
Brake	В	23
Cable exit direction (bottom)	CJB	23
Cable exit direction (left)	CJL	23
Cable exit direction (right)	CJR	23
Cable exit direction (top)	CJT	23
Non-motor end specification	NM	23
PNP specification (Note 2)	PN	23
Split motor and controller power supply	TMD2	22
specification (Note 2)	TMD2	25
Wireless communication specification (Note 3)	WL	23
Wireless axis operation specification (Note 3)	WL2	23

(Note 2) If the RCON-EC connection specification (ACR) is selected, the PNP specification (Note 3)

If the RCON-EC connection specification (ACR) is selected, the PNP specification (PN) and split motor and controller power supply specification (TMD2) cannot be selected. As well, the interface box and conversion cable are not included. When selecting the RCON-EC connection specification (ACR), the wireless communication specification (WL) and wireless axis operation supported specification (WL2) cannot be selected. When using wireless communication with RCON-EC connection, separately prepare the interface box, conversion cable, and power / I/O cable connector which are available as options. Please refer to P. 27 for details.

Separately Sold Options

Name	Model	Reference page
Interface box conversion cable	CB-CVN-BJ002	32
RCON-EC connection specification power / I/O cable (standard connector cable)	CB-REC- PWBIO - RB	33
RCON-EC connection specification power / I/O cable (4-way connector cable)	CB-REC2- PWBIO□□-RB	33
RCON-EC connection specification interface box for split motor and controller power supply (wireless specification)	ECW-CVNWL-CB- ACR	32

The power / I/O cable connector is a robot cable. Please indicate the cable length in $\Box \Box \Box$. (Ex.: 010 = 1m) (Note)

- (1) "Main Specifications" displays the payload's maximum value. Please refer to "Table of Payload by Speed/Acceleration" for more details.
- (2) If performing push-motion operations, refer to the "Correlation Diagrams between Push Force and Current Limit." The push forces listed are only reference values. Please refer to P. 26 for applicable notes.
- (3) Pay close attention to the mounting orientation. Please refer to P. 5 for details.
- (4) When radial and moment loads are applied to the rod, refer to the instruction manual.
- (5) Cannot be used for stopper applications.

Actuator Cable Length

Selection

Notes

<u>^</u>

Cable code	Cable length	Actuator cable length				
1 ~ 3 1 ~ 3m		0				
4~5	4 ~ 5m	0				
6 ~ 10 6 ~ 10m (Note 4)						
lote 4) When connecting via the interface box 9m is the maximum available						

(N (Note) Make sure that the total length along with the power I/O cable connector is 10m or less.

Power I/O Cable Connector Length

Standard Connector Cable

Cable code	Cable length	User wiring specification (flying leads)		
		CB-EC-PWBIO		
0	Without cable	○ (Note 5)		
1~3	1 ~ 3m	0		
4~5	4 ~ 5m	0		
6~7	6 ~ 7m	0		
8~9	8 ~ 9m	0		

(Note 5) Only terminal block connector is included. When selecting RCON-EC connection specification (ACR) as an option, select "0." Terminal block connector is not included. Refer to P. 30 for details.

Robot cable. (Note) 4-way Connector Cable

_ · · · · , · · · · · · · · · · · · · ·								
Cable code	Cable length	User wiring specification (flying leads)						
	_	CB-EC2-PWBIO						
S1 ~ S3	1 ~ 3m	0						
S4 ~ S5	4 ~ 5m	0						
S6 ~ S7	6 ~ 7m	0						
S8 ~ S9	8 ~ 9m	0						

(Note) Robot cable.

EC ELECYLINDER IAI

Main Specifications

		Descr	iption		
Lead		Ball screw lead (mm)	4	2	
	Payload	Max. payload (kg)	1	2	
	с I <i>I</i>	Max. speed (mm/s)	200	100	
Horizontal	Speed /	Min. speed (mm/s)	20	10	
	deceleration	Rated acceleration/deceleration (G)	0.5	0.3	
	acceleration	Max. acceleration/deceleration (G)	0.5	0.3	
	Payload	Max. payload (kg)	0.4	0.8	
	с I <i>I</i>	Max. speed (mm/s)	200	100	
Vertical	Speed / acceleration/ deceleration	Min. speed (mm/s)	20	10	
		Rated acceleration/deceleration (G)	0.5	0.3	
		Max. acceleration/deceleration (G)	0.5	0.3	
Duala		Max. push force (N)	10	17	
Push		Max. push speed (mm/s)	20	20	
Brake		Brake specification	Non-excitation actuating solenoid brake		
		Brake holding force (kgf)	0.4	0.8	
		Min. stroke (mm)	10	10	
Stroke	2	Max. stroke (mm)	50	50	
		Stroke pitch (mm)	10	10	

Item	Description
Drive system	Rolling screw ϕ 4mm, rolled C10
Positioning repeatability	(10ST) ±0.1mm, (20ST or higher) ±0.05mm
Lost motion	- (notation not available due to 2-point positioning function)
Rod non-rotation precision	-
Operation life	Horizontal 10 million operating cycles, vertical 5 million operating cycles
Ambient operating temperature, humidity	$0 \sim 40^{\circ}$ C, 85%RH or less (no condensation)
Ingress protection	IP20
Vibration & shock resistance	4.9m/s ²
Overseas standards	CE marking, RoHS directive
Motor type	Stepper motor (ϕ 20)
Encoder type	Incremental
Number of encoder pulses	32768 pulse/rev

Table of Payload by Speed/Acceleration

The unit for payload is kg.

Orientation

Speed

(mm/s)

0

50

100

200

Lead 4

Acceleration (G)

0.4

Lead 2									
Horizontal	Vertical		Orientation	Horizontal	Vertical				
Accelera	ation (G)		Speed	Accelera	ation (G)				
0.5	0.5		(mm/s)	0.3	0.3				
1	0.4		0	2	0.8				
1	0.4		30	2	0.8				
1	0.4		70	2	0.8				
1	0.4		100	2	0.8				

Stroke and Max. Speed

Lead (mm)	10 (mm)	20 (mm)	30 (mm)	40 (mm)	50 (mm)			
4	200 <200>							
2	100 <100>							

(Unit: mm/s) (Note) Values in brackets < > are for vertical use.

Correlation Diac	rams between	Push Force and	Current Limi

	22								Reco	mme	nded	area
	22										1	
	20									1	-	
	18									1		
F	16								1			
e (14							1				_
õ	12	1.00	4 2 (anorl	imaitu	alua)	1		\leftarrow		1000	-
ę	10	Lea	u 2 (u	pperi	mil v	alue)		\sim		200		
łs	8	Lea	u z (a	ivera	ge va	ilue)			<u>، ۲</u>	\sim	<u> </u>	
Ъ	6	Lea	a 2 (Io	wer I	mit v	alue)		-	$ \sim$			
	4	Lead	14 (u	oper I	imit v	alue)						
	2	Lea	d 4 (a	ivera	ge va	ilue)						
	2	Lead	d 4 (lo	wer li	mit v	alue)						
	0) 1	0 2	0 3	0 4	0 5	0 6	0	70 8	30 9	0 10	0 110
					Cur	rent l	imit	/alu	e (%)			

Dimensions by Stroke

	Stroke	10	20	30	40	50
L	Without brake	97	107	117	127	137
(Note 7)	With brake	122	132	142	152	162
	В	28	38	48	58	68
	C	10	20	30	40	50
	F	0	10	20	30	40
Н		2	4	4	4	4
	J	0	10	20	30	40

(Note 7) When selecting cable exit direction (option), 1 is subtracted from the dimensions.

Mass by Stroke

	Stroke	10	20	30	40	50
Mass (kg)	Without brake	0.14	0.17	0.19	0.21	0.23
	With brake	0.16	0.19	0.21	0.23	0.25

- EC ELECYLINDER. IAI

EC ELECYLINDER[®]

Stroke

_		
Stroke (mm)	RCON-EC connection specification (Note 1)	NPN/PNP specifications
10	0	0
20	0	0
30	0	0
40	0	0
50	0	0

(Note 1) Be sure to select "ACR" as an option.

0	ptions	* Please chec	k the Optior	ns reference p	ages to conf	irm each op	otic

Name	Option code	Reference page
RCON-EC connection specification (Note 2) (Note 3)	ACR	23
Brake	В	23
Cable exit direction (bottom)	CJB	23
Cable exit direction (left)	CJL	23
Cable exit direction (right)	CJR	23
Cable exit direction (top)	CJT	23
Non-motor end specification	NM	23
PNP specification (Note 2)	PN	23
Split motor and controller power supply specification (Note 2)	TMD2	23
Wireless communication specification (Note 3)	WL	23
Wireless axis operation specification (Note 3)	WL2	23

(Note 2) If the RCON-EC connection specification (ACR) is selected, the PNP specification (PN) and split motor and controller power supply specification (TMD2) cannot be selected. As well, the interface box and conversion cable are not included.

(Note 3) When selection the Interface box and conversion Cable are not included. (Note 3) When selecting the RCON-EC connection specification (ACR), the wireless communication specification (WL) and wireless axis operation supported specification (WL2) cannot be selected. When using wireless communication with RCON-EC connection, separately prepare the interface box, conversion cable, and power / I/O cable connector which are available as options. Please refer to P. 27 for details.

Separately Sold Options

Name	Model	Reference page
Interface box conversion cable	CB-CVN-BJ002	32
RCON-EC connection specification power / I/O cable (standard connector cable)	CB-REC- PWBIO - RB	33
RCON-EC connection specification power / I/O cable (4-way connector cable)	CB-REC2- PWBIO - RB	33
Air cylinder compatible mounting plate	EC-CSB-T3-(stroke)	24
RCON-EC connection specification interface box for split motor and controller power supply (wireless specification)	ECW-CVNWL-CB- ACR	32

The power / I/O cable connector is a robot cable. Please indicate the cable length in $\Box \Box \Box$. (Ex.: 010 = 1m) (Note)

- (1) "Main Specifications" displays the payload's maximum value. Please refer to "Table of Payload by Speed/Acceleration" for more
- (2) If performing push-motion operations, refer to the "Correlation Diagrams between Push Force and Current Limit." The push forces listed are only reference values. Please refer to P. 26 for applicable notes.

(3) Pay close attention to the mounting orientation. Please refer to P. 5 for details.

(4) For the table displacement amount, refer to the instruction manual.

Actuator Cable Length

Cable code	Cable length	Actuator cable length		
1~3	1 ~ 3m	0		
4~5	4 ~ 5m	0		
6 ~ 10 6 ~ 10m (Note 4)				

(Note 4) When connecting via the interface box, 9m is the maximum available. (Note) Make sure that the total length along with the power I/O cable connector is 10m (Note) or less

Power I/O Cable Connector Length

Standard Connector Cable

Cable code	Cable length	User wiring specification (flying leads) CB-EC-PWBIO C-RB supplied		
0	Without cable	○ (Note 5)		
1~3	1 ~ 3m	0		
4~5	4 ~ 5m	0		
6~7	6 ~ 7m	0		
8~9	8 ~ 9m	0		

(Note 5) Only terminal block connector is included. When selecting RCON-EC connection specification (ACR) as an option, select "0." Terminal block connector is not included. Refer to P. 30 for details.

(Note) Robot cable.

4-way Connector Cable

Cable code	Cable length	User wiring specification (flying leads)		
		CB-EC2-PWBIO		
S1 ~ S3	1 ~ 3m	0		
S4 ~ S5	4 ~ 5m	0		
S6 ~ S7	6 ~ 7m	0		
S8 ~ S9	8 ~ 9m	0		

(Note) Robot cable.

Main Specifications

		Item	Descr	iption	
Lead		Ball screw lead (mm)	4	2	
	Payload	Max. payload (kg)	1	2	
		Max. speed (mm/s)	200	100	
Horizontal	Speed /	Min. speed (mm/s)	20	10	
	deceleration	Rated acceleration/deceleration (G)	0.5	0.3	
	deceleration	Max. acceleration/deceleration (G)	0.5	0.3	
	Payload	Max. payload (kg)	0.4	0.8	
	Speed / acceleration/ deceleration	Max. speed (mm/s)	200	100	
Vertical		Min. speed (mm/s)	20	10	
		Rated acceleration/deceleration (G)	0.5	0.3	
		Max. acceleration/deceleration (G)	0.5	0.3	
Duch		Max. push force (N)	10	17	
Push		Max. push speed (mm/s) 20		20	
Brake		Brake specification	Non-excitation actuating solenoid brake		
		Brake holding force (kgf)	0.4	0.8	
		Min. stroke (mm)	10	10	
Stroke	2	Max. stroke (mm)	50	50	
		Stroke pitch (mm)	10	10	

Item	Description
Drive system	Rolling screw ϕ 4mm, rolled C10
Positioning repeatability	±0.05mm
Lost motion	- (notation not available due to 2-point positioning function)
Allowable static	Ma: 1.90 N·m (10ST) 5.08 N·m (20ST) 11.7 N·m (30ST or higher)
moment	Mb: 1.90 N·m (10ST) 5.08 N·m (20ST) 11.7 N·m (30ST or higher)
moment	Mc: 7.99 N·m (10ST) 14.0 N·m (20ST) 22.0 N·m (30ST or higher)
Allowable dynamic	Ma: 1.04 N·m (10ST) 2.35 N·m (20ST) 4.71 N·m (30ST or higher)
moment	Mb: 1.04 N·m (10ST) 2.35 N·m (20ST) 4.71 N·m (30ST or higher)
(Note 6)	Mc: 4.37 N·m (10ST) 6.46 N·m (20ST) 8.84 N·m (30ST or higher)
Operation life	Horizontal 10 million operating cycles, vertical 5 million operating cycles
Ambient operating temperature, humidity	$0 \sim 40^\circ \text{C}, 85\% \text{RH}$ or less (no condensation)
Ingress protection	IP20
Vibration & shock resistance	4.9m/s ²
Overseas standards CE marking, RoHS directive	
Motor type	Stepper motor (ϕ 20)
Encoder type	Incremental
Number of encoder	32768 pulse/rev

EC ELECYLINDER[®]

(Note 6) Based on the standard rated operation life of 5,000km. Operation life varies according to operating and mounting conditions. Please refer to General Catalog 2021 P. 1-244 for details on operation life.

Table of Payload by Speed/Acceleration

The unit for payload is kg.

Lead 4

Lead 2

Orientation	Horizontal	Vertical	Orientation	Horizontal	Vertica
Speed	Accelera	ation (G)	Speed	Accelera	ation (G)
(mm/s)	0.5	0.5	(mm/s)	0.3	0.3
0	1	0.4	0	2	0.8
100	1	0.4	20	2	0.8
150	1	0.4	50	2	0.8
200	1	0.4	100	2	0.8

Stroke and Max. Speed

Lead (mm)	10 (mm)	20 (mm)	30 (mm)	40 (mm)	50 (mm)	
4	200 <200>					
2	100 <100>					

(Unit: mm/s) (Note) Values in brackets < > are for vertical use.

Correlation Diagrams between Push Force and Current Limit

			Recor	nmended area
Push force (N)	22 20 20 20 20 20 20 20 20 20	mit value) e value) nit value) e value) it value) it value) it value) it value) c value) it value) it value) c value) c value)	0 70 8 value (%)	

Dimensions by Stroke

Stroke		10	20	30	40	50
L (Note 8)	Without brake	93	103	113	123	133
	With brake	118	128	138	148	158
В		27	37	47	57	67
C		15	20	30	40	50
E		4	4	4	4	4
N		4	4	4	4	4
S		40	60	80	90	100
Т		20	20	30	40	50

(Note 8) When selecting cable exit direction (option), 1 is subtracted from the dimensions.

Mass by Stroke

Stroke		10	20	30	40	50
Mass	Without brake	0.15	0.18	0.21	0.23	0.25
(kg)	With brake	0.17	0.20	0.23	0.25	0.27

(Note) EC Series products are equipped with a built-in controller. Please refer to P. 28 for details on built-in controllers.

EC-T3

- EC ELECYLINDER. IAI

ELECYLINDER Series Options

RCON-EC	connection specification
Model Description	ACCR Applicable models All models Select when connecting to a field network via an R-unit (connected to RCON-EC). *This usage involves direct connection to RCON-EC. When using wireless communication, separately prepare an interface box, interface box conversion cable, and power / I/O cable connector.
Brake	
Model Description	B Applicable models All models This mechanism stops the slider, rod, or table from moving when the power or servo is turned off. When mounting the actuator vertically, this option is required.
Cable exit	direction
Model Description	CJB/CJL/CJR/CJT Applicable models All models The mounting direction of the actuator cable mounted on the actuator body can be channed among top, bottom, left, and right. Image: CJB Image: CJB Image: CJB I
Non-mot	or and specification
Model Description	Applicable models All models The home position is normally set to the motor side. This option is for setting the home position on the other side in order to accommodate variations in equipment layout, etc.
PN specif	cation *Cannot be selected simultaneously with the ACR option
Model Description	PN Applicable models All models For I/O specification, NPN is the standard specification. Specifying this option changes input/output to the PNP specification.
Split motor * Cannot be s	or and controller power supply specification elected with the ACR option (the RCON-EC connection specification is a split motor and controller power supply specification)
Model Description	TMD2 Applicable modelsAll modelsThis option provides a separate motor power supply and control power supply. Select to allow shutting down the actuator drive power only. Please refer to P. 30 for more information on wiring.
Wireless o	communication specification *Cannot be selected simultaneously with the ACR option
Model Description	WL Applicable models All models This option enables support for wireless communication. Specifying this option enables wireless communication with the TB-03 teaching pendant. The start point, end point, and AVD can be adjusted via wireless communication. When using wireless communication with RCON-EC connection, separately prepare an interface box, conversion cable, and power / I/O cable connector.
Wireless a	xis operation support specification *Cannot be selected simultaneously with the ACR option
Model Description	WL2Applicable modelsAll modelsSpecifying WL2 allows for the product to operate wirelessly as with WL (start point, end point, and AVD adjustment), and to also perform axis travel operation tests (forward end/backward end movement, jog, and inching). However, this function is not meant to perform automatic operation.Refer to P. 2-436 of the General Catalog 2021 for precautions on axis operations using a wireless connection.(Note) Customers cannot change WL to WL2, or WL2 to WL. Please contact IAI for this. When using wireless communication with RCON-EC connection, separately prepare an interface box, conversion cable, and power / I/O cable connector.

Individual Options

Air cylinder mounting plates

These plates provide compatibility for mounting with some models of air cylinders.

Plates can be mounted on the base side to enable mounting in accordance with the air cylinder body mounting hole positions.

Mounting to the table surface is not supported. Please contact our sales department for mounting compatibility details.

- *Not shipped assembled. Assembly required.
- Applicable Model: EC-T3

Accessories

Model: EC-CSB-T3-(stroke) (Material: aluminum)

· Hex socket bolts: M3×15 (4 pcs) • Parallel pins: ϕ 3×8 B type h7 (2 pcs)

Stroke	10	20	30	40	50
Z	54.5	64.5	74.5	90.5	117.5
ZZ	61	71	81	97	124
G	15	22	*	14	16
GB	9	16	26	27	54
Н	25	28	*	31	29
HB	37	40	40	55	55
NN	2	2	3	3	4
Mass [kg]	0.062	0.074	0.086	0.104	0.136

*For 30 stroke, refer to the 30 stroke specification.

EC maintenance part model list

SL3/GDS3/GDB3/T3

The numbers in the table correspond to the numbers in the schematics.

(1) Motor uni	t	(Accessories: Bolts, screws, hex wrench)
Туре	Brake	Model
SL3 GDS3	No	EC-MUSLTGD3
GDB3 T3	Yes	EC-MUSLTGD3-B

(2) Actuator cable mounting box

Туре	Cable exit direction	Model
SL3 GDS3	Back	EC-CASBR-SLTGD3
GDB3 T3	Side	EC-CASBS-SLTGD3

(3) Actuator cable assembly

Туре	Model	
SL3 GDS3 GDB3 T3	CB-EC-SLTGD3-MPA 🗆 🗆 – AS	

(4) Interface box conversion cable

Туре	Model
SL3 GDS3 GDB3 T3	CB-CVN-BJ002

(5)-1 Interface box

(Accessories: Screws)

(

Туре	Wireless	I/O	Model
SL3	Nono	NPN	ECW-CVN-CB
GDS3	None	PNP	ECW-CVP-CB
GDB3	WL	NPN	ECW-CVNWL-CB
T3	WL2	PNP	ECW-CVPWL-CB

(5)-2 Split motor and controller power supply interface box

		-	
Туре	Wireless	I/O	Model
SL3	None	NPN	ECW-CVN-CB-TMD2
GDS3	none	PNP	ECW-CVP-CB-TMD2
GDB3	WL	NPN	ECW-CVNWL-CB-TMD2
T3	WL2	PNP	ECW-CVPWL-CB-TMD2

(5)-3 RCON-EC connection specification (option model: ACR) split motor and controller power supply interface box

-		-	
Туре	Wireless	I/O	Model
SL3 GDS3 GDB3 T3	WL WL2	NPN _REC	ECW-CVNWL-CB-ACR

(6) Stainless steel sheet

Туре	Model	
SL3	ST-EC-SL3-(stroke)	

Push-motion operation

Push-motion operation is a function that keeps the rod or table pushed up against the workpiece, as with an air cylinder.

Please check the usage instructions and precautions below prior to use.

[Precautions]

· When pushing, the static and dynamic allowable moments of the guide must be taken into consideration.

[Push force adjustment]

• The push force during push-motion operation can be adjusted by changing the "push force (%)" on ELECYLINDER.

•Please check the push force for the applicable model in the "Correlation Diagrams between Push Force and Current Limit" on the production specification page, and select a model that matches your conditions.

[Lead selection method]

Select a lead with the desired push force within the recommended current limit value range (yellow area of the graph).

Lead 4 would be appropriate for the EC-T3 type shown in the figure to the right if a push force of 8N is desired. Selecting lead 2 would limit the adjustment range.

<Correlation Diagrams between Push Force and Current Limit>

Caution

- The "Correlation Diagrams between Push Force and Current Limit" show lower guidelines for push force for each current limit value.
- Individual differences in the motor and variations in machine efficiency may cause the push force lower limit to be exceeded, even if the current limit value is the same.

This is especially true when the current limit value is 30% or lower, in which case the push force lower limit could be exceeded by 40% or more.

Overhang load length (*ℓ***)**

This is the approximate offset at which the actuator can operate smoothly even when the workpiece or bracket is offset from the slider. Vibration or other factors could cause failure if the approximate length is greatly exceeded. The product should therefore be used within the approximate length. Please refer to the reference page of each model for detailed figures.

Selection notes

When connecting the Ultra-Mini ELECYLINDER to a PLC, three connection methods are available.

Select from these three connection methods.

Take note of the connection restrictions and items to be prepared separately.

*Contact our sales department to change the connection method after purchase.

1. When connecting directly to the PLC (NPN/PNP specifications)

(Note) The total cable length of the actuator cable and power / I/O cable connector (cable prepared by the customer in the case of the terminal block connector) should be selected so as not to exceed 10m.

2. When connecting to the PLC via an EC connection unit (RCON-EC connection specification) [Teaching pendant connected via wiring]

3. When connecting to the PLC via an EC connection unit (RCON-EC connection specification) [Teaching pendant wirelessly connected]

Options Touch panel teaching pendant (wireless connection)

List of Accessories

Power / I/O Cables, Connectors

Options

Touch panel

teaching pendant

(wired connection)

[Standard connector]

	None	Power / I/O connector (1-1871940-6)
0	Yes	_

Interface

(See P. 32)

box conversion cable

<Model: CB-CVN-BJ002>

[Four-way connector]

Power I/O cable connector length (selected with actuator model) RCON-EC connection specification (ACR) selection Accessory \$1 ~ \$9 None Power / I/O cable (CB-EC2-PWBIODDDD-RB)	Product	category		
(selected with actuator model) (ACR) selection \$1 ~ \$9 None Power / I/O cable (CB-EC2-PWBIO - RB)	Power I/O cable connector length	RCON-EC connection specification	Accessory	
S1 ~ S9 None Power / I/O cable (CB-EC2-PWBIO $\square \square$ -RB)	(selected with actuator model)	(ACR) selection		
	S1 ~ S9	None	Power / I/O cable (CB-EC2-PWBIO - RB)	•

Basic Controller Specifications

Specification item			Constituent constant		
Specification item		em	Specification content		
Number of controlled axes			1 axis		
Power supply voltage			24VDC ±10%		
Power capa	city (Note 1)		Rated 0.7A, max. 1.1A		
Brake releas	e power supply		24VDC ±10%, 200mA (only for external brake release)		
Generated h	ieat		2W		
Inrush curre	nt (Note 2)		3A		
Momentary	power failure res	istance	Max 500µs		
Motor size			φ20		
Motor rated	current		0.4A		
Motor contr	ol system		Weak field-magnet vector control		
Supported e	encoders		Incremental (32768 pulse/rev)		
SIO			RS-485 1ch (Modbus protocol compliant)		
		No. of inputs	3 points (forward, backward, alarm clear)		
	la a d	Input voltage	24VDC ±10%		
	specification	Input current	5mA per circuit		
	specification	Leakage current	Max. 1mA/1 point		
Interface		Isolation method	Non-isolated		
specification		No. of outputs	3 points (forward complete, backward complete, alarm)		
specification		Output voltage	24VDC ±10%		
	Output	Output current	50mA/1 point		
	specification	Residual voltage	2V or less		
		Isolation method	Non-isolated		
Data setting	, input method		PC teaching software, touch panel teaching pendant		
Data retenti	on memory		Position and parameters are saved in non-volatile memory (no limit to number of rewrites)		
	Controller status display		Servo ON (green light ON) / Alarm (red light ON) / Initializing when power comes ON (orange light ON) / Minor failure alarm (green/red alternately blinking) / Operation from teaching: Stop from teaching (red light ON) / Servo OFF (light OFF)		
LED display	Wireless status display		Initializing wireless hardware, without wireless connection, or connecting from TP board (light OFF) Connecting through wireless (green blinking) / Wireless hardware error (red blinking) / Initializing when power comes ON (orange light ON)		
Forward end/backward end display (Note 3)		ackward end)	Lit orange: Forward end/backward end, push idling detection Blinking orange: Push complete		
Predictive maintenance/preventative maintenance		entative	When the number of movements or operation distance has exceeded the set value and when the LED (right side) blinks alternately green and red at overload warning *Only when configured in advance		
Ambient operating temperature		ure	0 ~ 40°C		
Ambient operating humidity			5%RH ~ 85%RH or less (no condensation or freezing)		
Operating ambience			No corrosive gas or excessive dust		
Insulation resistance			500VDC 10MΩ		
Electric shock protection mechanism		chanism	Class 1 basic insulation		
Cooling method			Natural air cooling		

(Note 1) When connecting to RCON-EC, 0.3A is subtracted from the value.

(Note 2) Inrush current flows for approximately 5ms after the power is input. (At 40°C) Inrush current value differs depending on the impedance on the power line. (Note 3) The LED display function can be changed via parameter setting.

Solenoid Valve Method

ELECYLINDER products normally use a double solenoid method.

Change parameter No. 9 ("solenoid valve type selection") to use the single solenoid method.

<Caution>

Operation cannot be performed using the single solenoid method when operating connected to RCON-EC.

Interface Box Specification (I/O specification)

1/0	0	Input		Output	
		Input voltage	24VDC ±10%	Load voltage	24VDC ±10%
		Input current	5mA per circuit	Maximum load current	50mA/1 point
Specifie	cations	ON/OFF voltage	ON voltage: MIN. 18VDC OFF voltage: MAX. 6VDC	Residual voltage	2V or less
		Leakage current	Max. 1mA/1 point	Leakage current	Max. 0.1mA/1 point
Isolation	method	Non-isolated f	rom external circuit	Non-isolated from external circuit	
I/O	NPN	Internal power 244'		toternat circuit	Liso Couput terminal
logic	PNP	External power 24V		The second learned lea	

(Note) Isolation method is non-isolated. When grounding an external device (such as a PLC) connected to ELECYLINDER, use the same ground as ELECYLINDER.

I/O Signal Wiring Diagram

(Note 1) Switching to the single solenoid method will change B3 to "forward/backward command" and B4 to "unused."

I/O Signal Table

B3 (Note 1)	Backward	ST0	Backward command
B5	Alarm clear	RES	Alarm clear
A4	Forward complete	LS1/PE1	Forward complete/push complete
B2	Brake release	BKRLS	Brake forced release (for brake equipped specification)
A1	0V	0V	0V input

(Note 1) Switching to the single solenoid method will change B3 to "forward/backward" and B4 to "unused." However, the power / I/O connector display will still read "B3: Backward" and "B4: Forward."

(Note 2) B1 is 24V (drive) and A2 is 24V (control) for the split motor and controller power supply specification (TMD2).

Options

Wireless/wired touch panel teaching pendant

- Features This teaching device supports wireless connections. Start point/end point/AVD input and axis operation can be performed wirelessly.
- **Model TB-03-** (Please contact IAI for the current supported versions.
- Configuration Wireless or wired connection

Wired/wireless touch panel teaching pendant with power supply unit

Model TB-03E-

Configuration Wireless or wired connection

	5.9VDC (5.7 ~ 6.3V) [supplied from AC adapter]
	150mA (supplied from controller)
	5%RH ~ 85%RH (no condensation or freezing)
	10 ~ 57Hz / Amplitude: 0.075mm
	670g (body) + approx. 285g (dedicated cable)
	SD/SDHC memory card interface mounted (1GB ~ 32GB)
	Japanese/English/Chinese

Power Supply Unit Specifications

TB-03 Body Specifications

Rated input	voltage	Single-phase 100 ~ 230VAC±10%	
Input current Under rated 1/0 conditions in ambient temperature of 25°C		1.4A typ. (100VAC) 0.6A typ. (230VAC)	
Frequency r	ange	50/60Hz ±5%	
Power capacity $\begin{pmatrix} Un \\ in a \end{pmatrix}$	der rated I/O conditions Imbient temperature of 25°C	141VA (100VAC) 145VA (230VAC)	
Output volt	age	24VDC ±10%	
Load Standard current High rigidity		With energy-saving setting disabled: Rated 3.5A, max. 4.2A With energy-saving setting enabled: Rated 2.2A	
	Mini type	Max. 2.0A	
Output capa	acity	With energy-saving setting disabled: Rated 84W, max. 98.4W With energy-saving setting enabled: Rated 52.8W	
Ambient operat	ing temperature	0 ~ 40°C (no condensation or freezing)	
Ambient opera	ating humidity	5%RH ~ 85%RH (no condensation or freezing)	
Ambient storag	ge temperature	-20 ~ 70°C	
Atmosphere	2	No corrosive gas or excessive dust	
Altitude		1000m or less above sea level	
Vibration resistance		Frequency: 10 ~ 57Hz / Amplitude: 0.075mm Frequency: 57 ~ 150Hz / Acceleration: 9.8m/s ² [XYZ directions] Sweep time: 10 minutes, Number of sweeps: 10	
Package drop		Drop height: 800mm / 1 corner, 3 edges, 6 faces	
Overvoltage category		Ш	
Pollution degree		2	
Electric shock protection class		11	
Ingress protection		IP30	
Mass		Approx. 740kg	
Cooling method		Natural air cooling	

PC teaching software (Windows only)

RCON-EC connection specification

split motor and controller power supply interface box Features This cable connects the actuator cable and (wireless)

Interface box conversion cable

interface box.

Model ECW-CVNWL-CB-ACR

Model CB-CVN-BJ002

Maintenance/Optional Parts (cables)

When individually ordered cables or replacements must be ordered, refer to the model number below.

Table of Compatible Cables

Cable type	Cable model
Power / I/O cable (user-wired specification)	CB-EC-PWBIO
Power / I/O cable (user-wired specification, four-way connector)	CB-EC2-PWBIO
Power / I/O cable (RCON-EC connection specification)	CB-REC-PWBIO
Power / I/O cable (RCON-EC connection specification, four-way connector)	CB-REC2-PWBIO

*Please indicate the cable length (L) in maximum 9m (for example, 030 = 3m)

(Note 1) 24V (control) when split motor and controller powe supply specification (TMD2) is selected.

> *Please indicate the cable length (L) in $\Box \Box \Box$, maximum 9m (for example, 030 = 3m)

-RB

Cap for L-shaped cover

*Please indicate the cable length (L) in $\Box \Box \Box$, maximum 9m (for example, 030 = 3m)

Four-Way Connector Cable

The cable exit direction from the connector can be freely selected from four directions.

The cable management for the connector is the same as that of power I/O cable CB-EC-PWBIO - -RB/CB-REC-PWBIO - -RB.

Model number: CB-EC2-PWBIO

CB-REC2-PWBIO

Cable exit direction

- The wiring on the side opposite the connector is left unprepared.
- The cable length may be from 1m to 9m long.

The length can be specified in 1m units.

• Example models are listed below.

Cable length <u>1</u> m	\rightarrow	CB-EC2-PWBIO0010-RB
Cable length <u>3</u> m	\rightarrow	CB-EC2-PWBIO0030-RB
Cable length 9 m	\rightarrow	CB-EC2-PWBIO090-RB

Follow the procedure below to assemble the connector in the desired direction.

- Insert while sliding along the groove in the desired direction from the semi-cylindrical curved portion.
- (2) Confirm that the cable has beenfirmly inserted, and then insert the2 sides of the lid along the groove.
- (3) Finally, press the remaining side of the lid.

Catalog No. CE0297-2A (2022JUL)

IAI America, Inc.

USA Headquarters & Western Region (Los Angeles) : 2690 W. 237th Street, Torrance, CA 90505 (310) 891-6015 Midwest Branch Office (Chicago) : 110 East State Parkway, Schaumburg, Illinois 60173 (847) 908-1400 Southeast Branch Office (Atlanta) : 1220 Kennestone Circle, Suite 108, Marietta, GA 30066 (678) 354-9470 www.intelligentactuator.com

JAPAN Headquarters : 577-1 Obane, Shimizu-ku, Shizuoka-shi, Shizuoka, 424-0103, JAPAN The information contained in this product brochure may change without prior notice due to product improvements.

IAI Industrieroboter GmbH

Ober der Röth 4, D-65824 Schwalbach am Taunus, Germany

IAI (Shanghai) Co., Ltd. Shanghai Jiahua Business Center A8-303, 808, Hongqiao Rd., Shanghai 200030, China

IAI Robot (Thailand) Co., Ltd. 825 Phairoikijia Tower 7th Floor, Debaratar

825 Phairojkijja Tower 7th Floor, Debaratana Rd., Bangna Nuea, Bangna, Bangkok 10260, Thailand