

Why?

The engineers and technicians that have grown up with modern automation since the early 1980s are now in their later years and starting to retire. Unfortunately there are more engineers and technicians retiring than there are knowledgeable ones to replace them. This creates a set of major problems:

- Who understands the equipment they have been working on that is also aging?
- Who has the knowledge to implement the technologies they have spent 20+ years in learning?
- Modern technologies are great, but without a foundation from which to understand them, they can be difficult to understand.

Attending product-specific classes are helpful, but they always assume a base of knowledge. It is like learning algebra without learning the basic arithmetic first! Students come out of college with a base of general knowledge and the ability to think, but don't know what to do with that knowledge or how to apply it practically in their corporate environments.

Curriculum

- Level 1: Basics Introduction to Automation
 - · Overview and conceptual understanding
 - Foundation for Level 2
 - Target audience:
 - Non-technical personnel seeking some frame of reference
 - · Recent college graduates entering the workplace
- Level 2: Architectures Intermediate Automation
 - Architectures
 - Sizing factors & concepts
 - Software, electrical & mechanical concepts
 - · Target audience: technical personnel seeking to better understand general automation technologies

Level 3: Selection - Advanced Automation

- · Sizing & selection
- Target audience: experienced technical personnel seeking to design systems and do their own sizing and selecting of products

COURSE	LEVEL	LENGTH	OBJECTIVES & TOPICS
Advanced Automation	1	30 min	What is "automation"? Why does one "automate"?
Automation Solutions Overview	1	15 min	What are the areas we cover in Valin's Automation Group?
Motion Control Building Blocks	1	30 min	What is required for electromechanical motion? What other types of motion are there?

Curriculum

COURSE	LEVEL	LENGTH	OBJECTIVES & TOPICS
Motion Control Basics	2	90 min	Servo History
			Servo Theory
			Elements of motion control
			Basics of:
			* Turning a step motor
			* Open-loop vs. Closed-loop
			* Control Theory Basics
			* Servo loops
			* Feedback
			* Commutation
			* Servo vs Stepper
Floatrical Canaanta	2	60 min	Pagia alactrical definitions and concents
Electrical Concepts	2	60 111111	Basic electrical definitions and concepts. • Voltage, Current, Resistor and Power
			Capacitor, InductorAC vs DC
			Analog vs Digital vs 4-20mA Crounding planes
			Grounding planes Optical laction
			Optical Isolation
			H-bridge Sinking and Sourcing current
			Sinking and Sourcing current Floatrical paids
			Electrical noise Single and day Differential
			Single-ended vs Differential

Curriculum

COURSE	LEVEL	LENGTH	OBJECTIVES & TOPICS
Sensors	1	30 min	Main sensor typesBasicsTerminology
Sensors	2	60 min	 More on sensor types Advanced features How to select photoelectric sensors Reading data sheets Fiber optics
Mechanical Basics	1	60-90 min	 Force, Torque & Moment Precision, Accuracy & Repeatability Mechanical components LOSTPED overview
Mechanical Concepts	2	2 hours	 Mechanical components - deeper look Linear Motors Mechanical specifications Statics & Dynamics Mitigating risk in mechanics LOSTPED deeper look
Automation in Process	1	30-60 min	Automation applications in the process industry: Not your regular valve control Networking Information control

Curriculum

COURSE	LEVEL	LENGTH	OBJECTIVES & TOPICS
Controls Architectures	2	1 - 2 hours	PLC vs Motion controllers and their evolutions
			Old types of controls
			Centralized vs Decentralized
			Local vs Remote
			Controller-based vs Drive or PC-based
			Types of programming languages
Drives, Motors & Feedback	1	1 hours	What does a drive do?
Overview			What different types of motors are there?
			What methods of feedback are there?
Drives, Motors & Feedback	2	1.5 - 2 hours	What makes motors move?
In-depth			What are the parts of motors?
			How does a drive work?
			What are the different drive architectures?
			How do the different feedbacks operate?
EMC Installation	3	1 hours	Why is installation important?
			What is the source of electrical noise?
			What is the solution?
Safety Overview	1	4 hours	Overview
Safety: Risk Assessments	2	4 hours	Why? What? How?

Curriculum

COURSE	LEVEL	LENGTH	OBJECTIVES & TOPICS
Safety: Machine Guarding Overview	2	1 day	 Risk Assessments Standards Circuit configurations Guarding technologies
Safety: OSHA Machine Guarding	3	1 day	 What are the rules per OSHA? Covers all the OSHA Machines plus the general safeguarding clause (1910.212)

Pricing

- \$750 per person per day with a minimum of 4 people in the class.
- \$3000 per day for one company onsite plus travel expenses if outside of California.

REGISTER

For more information please email: <u>valinuniversityinquiries@valin.com</u>

Class may not be available in your area. Please $\underline{\mathsf{email}}$ to confirm.

About Valin

Valin Corporation is the leading technical solutions provider for the technology, energy, life sciences, natural resources, and transportation industries. For over 45 years, Valin has offered personalized order management, on-site field support, comprehensive training, and applied expert engineering services utilizing automation, fluid management, precision measurement, process heating, and filtration products.

COMPLEX TECHNOLOGY MADE SIMPLE.

ISO 9001 Certified

